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Bayesian network is a popular machine learning tool for modeling uncertain depen-

dence relationships among the random factors of a domain. It represents the relations 

qualitatively by using a directed acyclic graph (DAG) and quantitatively by using a set 

of conditional probability distributions. Several exact algorithms for learning optimal 

Bayesian networks from data have been developed recently. However, these algorithms are 

still ineff cient to some extent. This is not surprising because learning Bayesian network 

has been proven to be an NP-Hard problem. Based on a critique of these algorithms, this 

thesis introduces a new algorithm based on heuristic search for learning optimal Bayesian 

networks. Empirical results show that this new algorithm is more eff cient than the existing 

algorithms. 
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CHAPTER 1 

INTRODUCTION 

In statistics, the probability of the occurrence of a random event has two different in-

terpretations. One interpretation is that probability is a physical property of the event. For 

example, a probability 0.5 with which a coin lands head means that, when the total number 

of tosses goes to inf nity, the proportion of heads will converge to 0.5. Another interpreta-

tion is that probability is a person’s degree of belief on events [16]. In this interpretation, a 

probability 0.5 represents a person’s degree of belief on the coin landing head in the next 

toss, i.e., probability is not a physical property but just a person’s belief. This belief may 

originate from the person’s daily experience or from other people’s suggestions. In this 

thesis, I focus on the latter interpretation of probability. 

So far, we only consider the probability of a single random event. There are many 

cases in which we are interested in modeling a more complex system that contains more 

than one relevant random factors. To model multiple correlated random factors, a general 

solution is to use a joint probability distribution. But this representation is impractical for 

large domains as it requires too much memory for storing the joint distributions that have 

large dimensions. This representation does not model conditional independence relations 

that may be present among the variables. In the past several decades, Bayesian networks 

1 
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have been used to provide a compact representation of joint probability distributions by 

explicitly modeling independence relationships. 

Many approaches have been developed to construct Bayesian networks. One easy ap-

proach is to translate experts’ knowledge of a domain into casual relationships among 

the random factors, which are then used to build the Bayesian networks. Currently, this 

method has been used in medicine, economy, psychology, etc. However, working with 

experts is somewhat ineff cient. Plus, there is often insuff cient domain knowledge avail-

able to build a complete Bayesian network. This is typically true, for instance, for newly 

emerged research areas such as biology and chemistry. Therefore, it is necessary to de-

velop effective machine learning methods for learning Bayesian networks from data. In 

the remainder of this chapter, I will give a more detailed discussion on Bayesian network 

and its learning methods. 

1.1 Overview of Bayesian Network 

For a domain with n variables X = {X1, ..., Xn}, a Bayesian network B has two 

components Bs and Bp. Bs is the graphical part, also called the Bayesian network struc-

ture which is represented by a directed acyclic graph (DAG). Each node in the graph 

corresponds to a domain variable. For simplicity, we also name nodes in DAG by X = 

{X1, ..., Xn}. A directed arc from node Xi to Xj models a dependence relation between 

Xj and Xi. We say Xi is a parent of Xj. Let Pai be the set containing all the par-

ents of Xi. We also use nonde(Xi) to denote all non-descendent nodes of Xi in Bs and 

2 
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de(Xi) to denote all descendent nodes. Bayesian network has the following important 

property [25, 19]: 

Figure 1.1 

An example of Bayesian Network 

Theorem 1 

(Markov Condition): Every node Xi is independent from nonde(Xi) given Pai. 

I explain this theorem brief y with a simple network of f ve variables shown in Fig-

ure 1.1. The Bayesian network has an arc from X1 to X2 which indicates that X1 and 

X2 are probabilistically dependent. On the other hand, the absence of an arc between X1 

and X4 indicates there is no direct dependence between them. According to above theo-

rem, X1 and X4 are conditionally independent given X2 and X3. Similarly, X1, X2 and 

X3 are probabilistic independent from X5 given Pa5 = {X4}. Methods for identifying 

conditional independence relations in Bayesian networks can be found in [25, 19]. 

The other component Bp ,which is also called network parameters, provides numer-

ical measurements of the conditional dependence relationships. In a Bayesian network 

model, each variable is given a conditional probability table in the form of P (Xi|Pai). If 

3 
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X4 State 1 State 2 

State 0 0.1 0.3 

State 1 0.25 0.4 

State 2 0.3 0 

State 3 0.25 0.2 

State 4 0.1 0.1 

Figure 1.2 

A conditional probability table. 

Pai is empty, it degenerates into a prior probability distribution P (Xi). In a Bayesian 

network, random variables can be either continuous or discrete. For continuous vari-

ables, we can use probability density functions to represent the conditional relations. 

For discrete variables, tables containing all conditional probabilities are used. Figure 1.2 

is an example of conditional probability table of X4 conditional on X5. In this table, 

P (X4 = state0|X5 = state0) = 0.1 and P (X4 = state1|X5 = state0) = 0.25. The size 

of the table is equal to the product of the cardinalities of X4 and X5. 

With a complete def nition, Bayesian network can now be used to do inference, such 

as to calculate the joint probability of variables. In the future discussions, I use uppercase 

letters to represent variables and lowercase letters to represent instantiations of variables. 

If an instantiation involves a set of variables, it means the Cartesian product of the instanti-

ation of each individual variable. Here we use ˇi to denote the instantiation of the variable 

4 
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set Pai. Then a formula of calculating the joint probability of n variables can be written 

as 

n Y
P (x1, ..., xn) = P (xi|ˇi). (1.1) 

i=1 

This formula, also called chain rule, is def ned to calculate joint probability of all n vari-

ables. A more detailed discussion of chain rule can be found in [25]. Using this formula, 

it is not hard to calculate the probability of any set of variables by eliminating other irrele-

vant variables. Let Y, Z be two subsets of X. The formula of calculating their probabilities 

can be written as: 
X

P (Y) = P (X) (1.2) 
Xi2X,Xi2/Y 

Also we can compute P (Y|Z) by using Bayesian rule 

P (Y|Z) = P (Y,Z)/P (Z). (1.3) 

Besides using this brute-force approach above to calculate probabilities, there are many 

other more eff cient algorithms [10, 18, 28, 29]. 

1.2 Learning Bayesian networks 

In the last section, we discussed that a complete Bayesian network contains Bs and Bp. 

Correspondingly, learning Bayesian networks also contains two tasks. One is to estimate 

the parameters Bp. Some popular algorithms for learning parameters can be found in [25]. 

The other is to f nd a graphic structure Bs which best f ts the data. There are many popular 

algorithms for learning Bayesian networks from data. Generally, they are divided into two 

categories. 
5 



www.manaraa.com

All algorithms falling in the f rst category are called constraint-based learning algo-

rithms [32, 26, 36, 37]. They assume that data implies independence and conditional 

independence relationships among variables that can be inferred by using statistical test-

ing or some other non-Bayesian approaches and that there exists a DAG which entails 

all or at least most of these relationships. One popular statistical testing method can be 

found in [27]. Using this conditional independence information, we are able to determine 

the presence and absence of arcs between variables and therefore to build the whole net-

work. There are many variations of this basic idea. One of them is the Greedy Thick 

Thinning algorithm [4]. It uses conditional independence and dependence relationships 

obtained from mutual information tests to greedily add and delete arcs between variables. 

Constraint-based algorithms often require a lot of data in order for the results to be reli-

able [2], which is often unsatisf ed in practice. 

Algorithms in the second category are based on Bayesian approaches and are often 

called score-based methods. They assume a search space which contains all network struc-

tures satisfying the directed acyclic constraint and assign a global prior probability to each 

network. By using Bayesian approaches, we can compute the posterior probability for 

each network given the data. According to the Maximum Likelihood principle in statis-

tics, a network which has the largest posterior probability best f ts the data and is therefore 

optimal in our consideration. However, sometimes we have many other concerns, such as 

the complexity of a DAG, overf tting, etc. These considerations have been formulated as 

various scoring principles, which I will discuss later. Some of them give better networks 

6 
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higher scores, while others give better networks lower scores. No matter what scoring 

criteria we choose, the purpose is to f nd a network to achieve the optimal score. 

1.3 Thesis Outline 

This thesis proposes a new algorithm based on heuristic search for learning optimal 

Bayesian network structures from data. We do not consider learning model parameters in 

this research. For convenience, we assume that the terms learning Bayesian network and 

learning Bayesian network structure have the same meaning and can be used equivalently. 

As we discussed before, there are two types of learning algorithms. Our algorithm falls in 

the second group. The key idea of this algorithm is applicable to any scoring principle if a 

good heuristic can be found. 

The remainder of the thesis is structured as followings. Chapter 2 formulates the task 

of learning Bayesian network and then reviews three popular algorithms for solving it. 

Chapter 3 discusses a new learning algorithm which is based on heuristic search. Chapter 4 

provides empirical results for evaluating the eff ciency of this new algorithm. Chapter 5 

summarizes the contribution of this thesis. 

7 
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CHAPTER 2 

LEARNING BAYESIAN NETWORK FROM DATA 

2.1 Basic Assumptions 

Before discussing learning Bayesian network, I make three basic assumptions. These 

assumptions that help to simplify the learning task are satisf ed in most practical problems. 

These assumptions come from [8]. 

2.1.1 Assumption 1. All variables in the database are discrete 

This assumption requires all variables to be discrete and have f nite number of instanti-

ations. For continuous variables, there are many effective methods to transform them into 

discrete ones [22, 13, 12]. With this assumption, all conditional probabilities of a vari-

able given its parents can be stored in a table. Otherwise, a continuous probability density 

function is needed, which usually makes the learning task diff cult. Currently, there are 

just a few existing algorithms that handle continuous variables and they typically assume 

that the probability density function follows the normal distribution. More about these 

algorithms can be found in [25]. 

8 
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2.1.2 Assumption 2. Data cases are independent given a Bayesian network. 

A database is a list which contains N cases. Each case is an instantiation of a set of 

variables. With this assumption, the database is def ned to be a random sample in which 

each case happens independently. A simple example is the coin toss experiment. In each 

trial, the probability with which a coin lands head or tail is the same and is not inf uenced 

by the result of any previous or future trial. 

2.1.3 Assumption 3. There are no missing data in database. 

No missing data means each case in our database is a complete instantiation of all 

the variables of the domain. This assumption enables us to ignore data interpolation step 

which is important in data mining. Although many technical diff culties in practice may 

inevitably bring in missing values for some variables, there are many effective algorithms 

available for us to f ll in missing values before the learning process. Some of these tech-

niques can be found in [12, 13, 22, 15]. Figure 2.1 is an example of a database with no 

missing data. 

Cases Variable_1 Variable_2 Variable_3 Variable_4 

1 1 1 0 1 

2 1 0 1 1 

3 0 1 1 1 

4 1 0 1 0 

5 0 1 0 0 

6 0 1 0 0 

7 0 1 0 0 

Figure 2.1 

Database of four variables 

9 
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2.2 Basic Model and Data Structure 

In a learning problem, we usually rewrite Bs, namely the DAG, as a variable set 

X = {X1, ..., Xn} and a set containing their parent sets {Pa1, Pa2, ..., Pan}. For instance, 

Figure 1.1 shows a simple Bs which can rewritten as a pair of sets {X1, X2, X3, X4, X5} 

and {{}, {X1}, {X1}, {X2, X3}, {X4}}. From this example, the parent set of X1 is empty. 

The parent set of X2 is {X1}. The parent set of X3 is also {X1}, etc. Now the task of 

learning optimal Bayesian networks is equivalent to the task of f nding a parent set for 

each variable such that the whole graph is an optimal directed acyclic graph. Now I will 

introduce several data structures which help to illustrate the learning algorithms. 

2.2.1 Parent Graph 

Among all possible DAGs with n variables, we let Pasi to be a set which contains all 

possible parent sets of variable Xi. The elements in Pasi are all subsets of X − Xi. For 

example, assuming that there are three variables in total, X1 cannot be a parent of itself. 

Otherwise, there is a direct circle from Xi to itself in the network. Either X2 or X3 or 

both of them can be the parents of X1. In this case, Pas1 is {{}, {X2}, {X3}, {X2, X3}}. 

Similarly, Pas2 is {{}, {X1}, {X3}, {X1, X3}} and Pas3 is {{}, {X1}, {X2}, {X1, X2}}. 

Parent Graph is a simple data structure used to store Pasi for each variable. Figure 2.2 

is a parent graph for the variable Xi in which the variable names are represented by the 

indices. Parent graph in fact is a tree in which each node represents a possible parent set. 

Each node has one more variable than nodes located in its previous layer. The number 

10 
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42 3 

2,3 3,4 2,4 

2,3,4 

Figure 2.2 

All parent sets of variable 1 in set {2, 3, 4}. 

of nodes in each layer is equal to Ci
n 
−

−

1
1 where (i = 1, 2, ...) is the layer index. The total 

number of nodes is 2(n−1). 

2.2.2 Order Graph 

As described above, we use Pasi to denote all possible parents of Xi. However, 

Q
the space formed by the Cartesian product Pasi contains many cyclic networks. For 

example, {{X2}, {X1}, {X2}} is not a correct Bs because X1’s parent is X2 and X2’s 

parent is X1 which form a circle between these two variables. Some circles will involve 

three variables or more. These illegal networks should be removed. 

In order to describe the space which only contains all legal DAGs, we def ne a total 

ordering over the variables. This concept enables us to consider each variable’s parents 

independently when constructing DAGs. A total order can be written as � = Xi1 ≺ Xi2 ≺ 

11 
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Xi3 ≺ ... ≺ Xin where Xi ≺ Xj means Xi is before Xj in the order. There are totally 

n! possible orders over n variables. Given an order, each variable’s parents must be a 

subset of those variables before it in the order. For example, Xi is a parent of Xj only if 

Xi ≺ ... ≺ Xj . Using this method to build Pasi for each variable and construct network 

space by their Cartesian product, each Bs is a legal directed acyclic graph. This is true 

because each variable just chooses parents from variables before it, which never produces 

circles. 

With the def nition of total ordering, the size of the network space that is consistent 

with an order can be computed. The number of possible parents for the f rst variable is 

1 = 20 (no parents), for the second is 2 = 21 (no parents or the f rst variable to be its 

parent), for the third is 4 = 22 , for the ith is 2(i−1)... As a result, the f nal size of PBs is 

the product of these numbers which is equal to 2(n�(n−1)/2). 

Order graph is a structure which stores all possible orders over the variables. Fig-

ure 2.3 is an order graph for four variables. we usually called the bottom-most node that 

contains no variable root and the top-most node that contains all variables leaf. Each 

node contains several variables indexed by numbers. Each edge connects two nodes one 

of which contains one more variable than the other. Each path from the root to the leaf 

which passes n nodes is a total ordering over n variables. The earlier a variable appears 

in the path, the earlier this variable appears in the ordering. In a dynamic programming 

algorithm, each node is assumed to be an optimal Bayesian network containing all the 

variables in the node. Larger networks can be obtained by adding variables. Dynamic 

programming provides a strategy of f nding an optimal Bayesian network using optimal 

12 
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1,2,3,4 

2 3 41 3 4 

, , , 

2,3,41,3,41,2,4 1,2,3 

2,3 2,4 1,3 1,4 1,2 3,4 

1 432 

Figure 2.3 

Order graph of four variables 

networks with one fewer variable. Following this manner, f nally, an optimal network of n 

variables is obtained. The detailed algorithm will be discussed later. 

2.2.3 ADTree 

Unlike parent graph and order graph which help to def ne DAG, ADTree is a data 

structure used to count the number of cases in a database that match certain instantiation of 

variables [23]. These count statistics are utilized by various scoring principles. An ADTree 

is an unbalanced tree which contains two types of nodes: varying node and ADTree node. 

An ADtree node stores the number of cases consistent with the variables instantiation of 

this node; a varying node is used to instantiate a variable. A full ADTree stores counts of 

13 
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cases that are consistent with all possible partial instantiations of the variables. Figure 2.4 

is an ADTree with n variables and each variable has ni instantiations. A variable being 

equal to a star means that this variable can be instantiated by any value when counting 

matching cases in database. For example, in the root ADTree node, every variable is equal 

to star, so all the cases in the database matches this node. 

Now assume that we want to calculate the count of cases matching query {X1 =

�, X2 = 1, X3 = �, X4 = 2}. This question can be answered by f nding an ADTree node 

which has exactly the same conf guration of these four variables. First, we go to the branch 

with the varying node X2 and then go to the ADTree node with X2 = 1. Next, we go to 

the varying node with X4 and then ADTree node with X4 = 2. The ADTree node thus 

found gives the correct count. From this example, it is clear that we branch in an ADTree 

according to specif c values of variables. As a result, we are able to compute the counts of 

all instantiations of the variable Xi1 , Xi2 , ...Xin . 

2.3 Scoring Metrics 

After def ning the task of the learning Bayesian network and relevant data structures, 

we need some rules to measure which network structure f t the observed data better. In 

this section, I will present two popular scoring principles. 

2.3.1 Bayesian Dirichlet (BD) and BDeu 

Bayesian Dirichlet (BD) score [8] measures the f tness of Bs to data based on proba-

bility. This method assumes that there is a prior probability P (Bs) associated with each 

14 
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Figure 2.4 

Order graph of four variables 

15 
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legal Bs. Along with each Bs, we use Bp to represent all relevant parameters which help 

to def ne conditional probability tables and use f(Bp|Bs) to denote the probability of Bp

given Bs. Let D be the database which contains a number of cases where Di is the ith 

case and Dij be the value of the jth variable in the ith case. Then the BD score can be 

calculated using formula: 

P (Bs, D)
P (Bs|D) = R / P (Bs, D) (2.1) 

Bs 
P (Bs, D)dBs

Z 
P (Bs, D) = P (D|Bp, Bs)f(Bp|Bs)P (Bs)dBp (2.2) 

Bp 

Since we have assumption 2.1.2 that each case is independent given Bs and Bp, we can 

rewrite P (Bs, D) to be 

Z Y
P (Bs, D) = ( P (Di|Bp, Bs)) · f(Bp|Bs) · P (Bs)dBp . (2.3) 

Now I will explain each term in the formula. The term P (Di|Bp, Bs) is easy to obtain 

using Formula 1.1(the chain rule). 

Then it comes to the term f(Bp|Bs). Since each variable is assumed to be discrete, 

there is a conditional probability table associated with each variable. For variable Xi, let 

the number of instantiations be ri and the size of its parents Pai be qi. Also let xik be the 

kth instantiation of Xi where k = 1, 2, ..., ri and ˇij be the jth instantiation of Pai where 

j = 1, 2..., qi. Then we use �ijk to denote P (xik|ˇij) where j = 1, 2...qi and k = 1, 2, ...ri. 

The number of distinct �ijk equals to ri · qi. At last, it is reasonable to make following 

three assumptions. 
16 
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• �ijk is independent from �ijk′ 

• �ijk is independent from �i′jk

• (�i1k + �i2k...�irik) = 1

Based on these conditions, 
Q
P (Bp|Bs) can be decomposed into: 

Y
P (Bp|Bs) = �i�j

qi 
=1f(�i1k, ..., �irik|Pai) (2.4) 

Now it comes to the key idea of BD scoring principle. It assumes a Dirichlet joint dis-

tribution for �i1k, ..., �irik which are probabilities of Xi given its parents f xed in the kth 

instantiation. The Dirichlet distribution is a multivariate case of the Beta distribution with 

which we can write as: 

Qri 
j=1 �( ijk)

�r
j
i 
=1�

ijk 
ijkf(�i1k, ...�irik; i1k, ... irik|Pai) = (2.5) 

�(�r
j
i 
=1 ijk)

where i = 1, ..., n, j = 1, ..., qi, k = 1, ..., ri and i1k, ..., irik are parameters of the 

distribution. 

After f guring out P (Di|Bp, Bs) and f(Bp|Bs), Cooper and Herskovits [8] then derive 

the Bayesian Dirichlet score function of Bs against data D. Before giving their results, we 

f rst def ne the following notations. 

• let N be the number of records in D 

• let Nij be the number of records in D which match jth instantiation of Pai

• let Nijk be the number of records in D which match both kth instantiation of Xi and 
jth instantiation of Pai

With P (Bs) unchanged, the BD score function can be written as [8, 31]: 

n qi ri�( ij)
P (Bs,D) = P (Bs)

YY Y �( ijk +Nijk)

�( ij +Nij) �( ijk)i=1 j=1 k=1 

17 
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where ijk and ij are parameters. The detailed proof of this result can be found in [8]. 

In paper [3], the author gives the likelihood equivalent uniform Bayesian Dirichilet 

(BDeu) score by further making the following assumptions based on BD score: 

• P (Bs) is uniformly distributed, 
1• ij = qi 

ij • ijk =
ri 

Therefore BDeu score can be written as: 

nY qi Y
BDeu(Bs,D) = BDeuij (2.7) 

i=1 j=1 

ri�( ij)

�( ij +Nij) k=1 �( ijk)

�( ijk +Nijk)
BDeuij =

Y
(2.8) 

Equation 2.8 provides a method to calculate score for Xi with parents f xed to the 

jth instantiation. That means we can compute the score for each variable and its parents 

without worrying about other variables. Once the parents of all variables are compatible, 

the whole structure’s BDeu score can be calculated by simply multiplying them together. 

A scoring principle with such a property is called decomposable. There are many scoring 

principles which possess this property. Decomposability makes the learning task easier. 

2.3.2 Minimum Description Length (MDL) 

MDL scoring principle is based on information theory [2]. In information theory, 

information entropy can help us measure the amount of information that is missing upon 

reception [9]. The formula to compute information entropy of random variable Xi is 

def ned as: 
X

H(Xi) = − p(xij) log2 p(xij) (2.9) 
18 
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This formula measures how much information we need in order to correctly describe vari-

able Xi. In machine learning, Occam’s razor provides a good heuristic for selecting a 

model to f t data. Shortly, Occam’s razor can be interpreted as: a simple model is better; a

smoother model is better; and a model with fewer parameters is better.

The MDL principle uses Occam’s razor as heuristic to select a Bayesian network that 

can describe the data as accurately as possible but with as few parameters as possible. 

In [2], the MDL principle is proved to be an approximation of the BD principle. Moreover, 

it offers some more advantages. Here I just give the formula of MDL and explain brief y 

the meaning of each term in the formula. More details can be found in paper [2]. 

Def nition 1 

Let Bs, D,N, n, qi, ri, Nijk, Nij be def ned as before. The description length MDL(Bs, D)

of Bayesian Network structure Bs with respect to D is def ned by 

MDL(Bs, D) = logP (Bs)−N ·H(Bs, D)− (K · logN)/2 (2.10) 

P P P Pn n qi ri Nijk Nijk where K = i=1 qi · (ri − 1) and H(Bs, D) = i=1 j=1 k=1 − N
log

Nij 

This description length is also MDL score. 

The f rst component P (Bs) is the prior probability of Bs. If we assume all structures 

have the same prior probabilities, this term can be ignored while comparing different net-

works. 

The second component −N · H(Bs, D) is the conditional entropy of Bs. Since the 

ratio within the log is always smaller than 1, this entropy is non-negative. It measures 

the uncertainty of the model with respect to the data. The larger the entropy is, the more 
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uncertainty the model possesses. A zero value means that there is no uncertainty at all or 

that the model is deterministic. 

The third component is (K · logN)/2. K is the total number of parameters used to 

correctly describe all conditional probability tables. For example, for Xi and each instan-

tiation ˇij of parents, we need (ri − 1) parameters �ij0, ...�ij(ri−1). The remaining one �ijri 

is automatically calculated since the sum of all probabilities is equal to one. Thus, the total 

number of parameters of Xi is qi(ri − 1). As we know in statistics, estimation of parame-

ters will def nitely bring errors. Intuitively, the number of parameters is proportional to the 

amounts of errors introduced by estimation. Bouckaert in his paper [2] says (K · logN)/2

measures number of parameters in the model and therefore is also a measurement of the 

error introduced by estimating all required probabilities. 

In total, because of the last two terms, the MDL score provides a measurement that 

takes into consideration a model’s simplicity and its goodness of f t to the data [33]. In 

this principle, the smaller the MDL score is, the better a model is. Thus, our goal is to f nd 

a model that minimizes the MDL score. 

2.4 Approximate Algorithm 

With the def nitions of Bayesian network and scoring principles, in this section, I 

brief y review several approximate learning algorithms. It has been shown that structure 

learning is NP-hard [7]. Given n variables, there are O(n2n(n−1)) directed acyclic graphs 

(DAGs). Since the size of the solution space grows super-exponentially in the number of 

variables, early research focused mainly on approximate algorithms. Various local search 
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methods have been proposed to search for high-scoring structures, including tabu search, 

restarting, and simulated annealing [2, 5, 17]. 

Several other methods improve simple local search using different strategies, includ-

ing ordered variables [8, 34], bound on number of parents [20, 21, 14], greedy equiva-

lent search that searches the space of equivalence classes [6], and optimal reinsertion that 

greedily applies an optimal reinsertion transformation repeatedly on the graph [24]. Yet 

some other methods combine constraint-based learning [32] with local search for f nding 

Bayesian network structures [35]. 

2.5 Dynamic Programming Algorithm 

In recent years, researchers began to study how to f nd optimal network structures 

based on dynamic programming. In this section, I review a popular dynamic programming 

algorithm [31]. This algorithm can f nd an optimal Bayesian network structure in O(n2n)

time. Another similar algorithm with the same worst time complexity is presented in 

paper [30]. 

Singh and Moore [31] developed a dynamic programming algorithm based on BDeu. 

In fact, other scoring principles such as MDL are also applicable. The basic idea is that 

each DAG graph contains at least one leaf node with no children nodes. Here let us assume 

there are n nodes. Each Bayesian network consists of two parts: a leaf node Xi and a 

subnetwork in which Xi and all arcs connected to Xi are removed. Since the BDeu score 

is decomposable,we can compute scores independently for each node given its parent set. 

Therefore, if a network structure is optimal, both the leaf node and the subnetwork should 
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be optimal. The leaf node Xi is optimal in the sense that it has an optimal parent set Pai

out of the remaining variables such that the node score NScore(Xi|Pai) is maximized 

(remember that all remaining nodes can be its parents). The subnetwork is optimal in the 

sense that it is the best network for the remaining n − 1 variables. More formally, the 

score of an optimal network for variables V, Score(V), can be expressed as the sum of 

two parts[31]. 

Score(V) = max Score(V \ {Xi}) +BestScore(V, Xi), (2.11) 
Xi∈V 

where 

BestScore(V, Xi) = max NScore(Xi|Pai). (2.12) 
Pai⊆V\{Xi} 

Figure 2.5 gives the pseudocode of dynamic programming algorithm. In the pseu-

docode, we use NetV to denote an optimal subnetwork consisting of V = {V1, V2, ..., Vm}. 

Our goal is to f nd an optimal network NetX which consists of all variables denoted by 

X = {X1, X2, ..., Xn}. 

This algorithm can be well illustrated by the order graph. Figure 2.3 shows an or-

der graph used by dynamic programming to f nd an optimal Bayesian network with four 

variables. In this graph, each node represents an optimal subnetwork consisting of the 

variables in it. For example, ; represents an empty subnetwork which is trivially opti-

mal. Nodes in the second layer represent all optimal subnetworks containing one variable. 

Based on the second layer, each node in the third layer can be built which represents an 

optimal subnetwork with two variables. Proceeding in this manner, the optimal network 

with four variables is obtained at the top layer. This layer just has one node which contains 
22 
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Algorithm: Learning optimal Bayesian network using Dynamic Program-
ming; 
Input: a dataset with n variables X = {X1, X2, ...Xn}; 
Output: an optimal Bayesian network. 

1. Find all optimal structures containing just single variable. 
2. for k = 2,..., n 
3. for each k variable set V = {Xi1, ...Xik}
4. for j = 1 to k 
5. Find for Xij an optimal parent set from V \ {Xij}. 
6. Let NetV−ij be an optimal network forV−ij = V \ {Xij}. 
7. Construct NetVj by adding Xij into NetV−ij . 
8. end for 
9. Let NetV be the optimal one from all the NetVj s. 

10. Store this optimal network and its score. 
11. end for 
12. end for 
13. Output the optimal network of NetX where X = {X1, X2, ..., Xn}. 

Figure 2.5 

Dynamic Programming for learning optimal Bayesian networks. 
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all n variables. For the node {1, 3, 4}, there are three nodes or optimal subnetworks in the 

third layer having an arc pointing to it. This means the optimal subnetwork of {1, 3, 4}

can be obtained by adding variable to one of these three optimal subnetworks. 

Also, as shown in Figure 2.3, each directed arc means a problem of f nding the optimal 

parents from a set of variables called candidate set. For example, the arc from node {1, 4}

to node {1, 3, 4} means to f nd the optimal parents for variable 3 from the candidate set 

{1, 4}. These operation can be f nished using parent graph as it links all possible parent 

sets into a tree structure. This data structure makes it eff cient to search the optimal parent 

set which is consistent with a candidate set. 

Dynamic programming f nds optimal subnetworks for all nodes in the order graph. 

It f rst chooses a variable and decomposes the original network into the variable and a 

subnetwork with it removed. It then computes the total score of network. Then algorithm 

chooses another variable to decompose the original network and calculates its score again. 

In this manner, algorithm considers each variable once and selects the one with the highest 

score. Finally, the algorithm constructs an optimal network by combining the selected 

variable and its parents with the optimal subnetwork with this variable removed. 

2.6 Systematic Search Algorithm 

A recent systematic search method uses theoretical properties of the MDL score to 

reduce the size of solution space [11]. It is found that some parent sets are guaranteed to 

be suboptimal without computing their scores. In particular, it is shown that, in an optimal 

Bayesian network, each node can have at most O(logN) parents where N is the number 
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of data points [11, 34]. Due to limited number of data points in a typical dataset, it is easy 

to prune the parent space (def ned above) and therefore decrease the computation to f nd 

optimal parent set. 

The search search algorithm f rst calculates the scores for all the valid parent sets. It 

then f nds optimal parent sets for all the variables by initially ignoring the acyclic con-

straint. The result is a directed graph with cycles. The algorithm then repeatedly f nds 

directed cycles in the candidate graph and systematically goes through all cycle-breaking 

strategies by removing one arc at a time. After breaking all circles, we obtain an optimal 

Bayesian network. 
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CHAPTER 3 

A HEURISTIC SEARCH ALGORITHM 

3.1 Basic Motivation 

From the algorithm in Figure 2.5, it is easy to see that dynamic programming f nds 

optimal subnetworks for all subsets of X . which in turn requires computing all the parent 

scores of each variable. For n variables, there are 2n nodes to evaluate in the order graph. 

For each node, there is a parent graph which stores 2n−1 parent sets along with their scores. 

2n−1The total number of parent sets is n · . This number grows very fast with respect to n. 

The algorithm[31] computes and stores all these parent sets. As a result, while the number 

of variables increases, the algorithm becomes infeasible as it requires too much memory 

and too much time to compute and store all parent sets. 

The systematic search algorithm in [11] was able to reduce the computation using the 

theoretical properties. However, it was shown to be less eff cient than dynamic program-

ming on some datasets. We believe there are two major reasons. First, it initially ignores 

the acyclic constraint and f nds optimal parent sets independently for all the variables. The 

number of parent scores that need to be computed can still be prohibitive and the search 

space containing cyclic networks is huge as well. Second, it needs to repeatedly detect and 

break cycles in directed graphs, which may be expensive for large graphs and results in an 

ineff cient search. 
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In this chapter, I present an improved search method for f nding optimal Bayesian net-

works to address the drawbacks of dynamic programming and systematic search. We f rst 

introduce our formulation and related techniques for improving search eff ciency and then 

end this chapter with a pseudocode of the algorithm and a discussion on its advantages. 

3.2 Formulation 

The basic idea of our algorithm is to formulate learning optimal Bayesian networks as 

a shortest path fnding problem. We use the order graph as the search graph. We view the 

root of order graph as the start state and the leaf as the goal state. 

For any two neighboring nodes S1 and S2 with an arc from S1 to S2, We def ne the 

edge cost c(S1,S2) to be −BestScore(S2, Xi), where Xi is the only variable the two 

nodes differ. 

Because we use the MDL score, we set the edge cost to be MDL(Xi|Pai), where Pai

is an optimal parent set for Xi out of S1. The goal is then to f nd a shortest path from 

the start state to the goal state that has the minimal cost. By def nition, the shortest path 

corresponds to a Bayesian network with the maximum total score. 

Once we formulate the problem as a shortest path f nding problem, we can apply any 

graph search technique to solve it. In this thesis, I present a best-frst heuristic search

algorithm, i.e., an A* search algorithm. We use a priority queue, called OPEN list, to 

organize the search frontier and initialize it with the start state. At each search step, we 

pop up the search node with the smallest cost from the OPEN list and expand its children 

search nodes. For each search node, we compute its f cost, the estimated total cost, as the 
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sum of g cost, the exact cost so far, and h cost, the estimated future cost to the goal state. 

Once a node is expanded, it is placed in a CLOSED list. Duplicate detection is performed 

for each newly generated node on both OPEN and CLOSED lists. If a duplicate is detected 

in the CLOSED list, we discard the new node immediately because we show later that we 

use a consistent heuristic. If a duplicate is detected in the OPEN list and the new node has 

a lower g-cost, we update the existing node with the new g-cost and parent pointer. 

The g cost is computed as the sum of edge costs on the best path from the start state to 

the current state. Each edge cost is computed when the end node of the edge is generated 

by the search. The computation is achieved by searching a suitable parent graph. For 

example, when the edge cost between nodes {2, 3} and {1, 2, 3} in Figure 2.3 is needed, 

we will go to the parent graph of variable 1 and search for a subset of {2, 3} that has the 

highest score. Therefore, our method is a two-layer nested search algorithm. The higher-

level search works on the order graph and f nds a shortest path. Whenever the higher-level 

search needs an edge cost, a lower-level search is deployed to f nd an appropriate score on 

a parent graph. 

Since the A* search only explores part of the order graph, we only need to compute 

some of the edge costs. This pruning is inherent in the search algorithm and is not reliant 

on any property of the scoring function. 

If we use a h function that is not only admissible but also consistent, the A* search 

algorithm guarantees to f nd a shortest path once the goal state is selected for expansion. 

We can extract an optimal Bayesian network out of the shortest path as each edge on the 
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path records an optimal parent set for a variable. Let U be a node on the order graph. We 

consider the following h function. 

Def nition 2 

X
h(U) = − BestScore(V, Xi). (3.1) 

Xi∈V\U 

h is clearly admissible, i.e., it always underestimate the cost (or equivalently, over-

estimate the score). h allows each remaining variable to select optimal parents from all 

the other variables in V. This effectively relaxes the acyclic assumption and results in a 

lower bound cost. The following theorem proves that the heuristic is also consistent. A 

consistent heuristic is guaranteed to be admissible. 

Theorem 2 

h is consistent. 

Proof: For any successor node R of U, let Y 2 R \ U. We have 

X
hU) = − BestScore(V, Xi)

Xi∈V\U 
X

� − BestScore(V, Xi)
Xi∈V\U,Xi 6=Y

−BestScore(R, Y )

= h(R) + c(U,R).

The inequality holds because fewer variables are used to select optimal parents for Y . 

Hence, h is consistent. 
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3.3 Parent graph pruning 

Parent graphs are used to compute both g and h costs in our search algorithm. The 

h-cost seems expensive to compute because it requires computing the optimal scores 

BestScore(V, Yi) for all remaining variables. This is equivalent to f nding an optimal 

parent set for each variable out of all the other variables, which requires a complete search 

on the variable’s parent graph. However, we only need to compute these best scores once 

in the beginning of the search. The scores are repeatedly used in later search. It is more 

expensive to compute the g-costs, which amounts to compute the edge costs. Computing 

each edge cost requires searching a parent graph to f nd the highest score among subsets 

of given candidate parents. 

Smaller parent graphs clearly will make computing g and h costs more eff cient. We 

utilize several pruning techniques to reduce the size of parent graphs. 

One technique relies on the following theorem presented in [11, 34] to prune large 

parent graphs. 

Theorem 3 

In an optimal Bayesian network based on the MDL scoring function, each variable has at 

most log( 2N ) parents, where N is the number of cases. 
log N

Therefore, there is no need to compute scores for any parent set whose size is larger 

than log( 2N ).
log N

Another technique prunes parent sets that are guaranteed to be worse than a common 

subset parent set without computing their exact scores based on the following theorem 

presented in [31]. 
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Theorem 4 

Let U ˆ V and X 2 U. Let hScore(X,U,V) be an upper bound which bounds 

BestScore(R, X) for any R such that U ˆ R � V. Then if hScore(X,U,V) <

BestScore(U, X), no proper superset of U can be optimal parent set for X . 

To use this theorem, we need the upper bound score hScore(X,U,V). Since we use 

the MDL score, we use the following lower bound for MDL def ned in [33]. 

Theorem 5 

Let U ˆ V and Xi be a variable not in V. For any R such that U ˆ R � V, we have 

logN
MDL(Xi|R) � K(Xi|U). (3.2) 

2

We do not use the tighter lower bound for MDL def ned in Theorem 6 presented in [34]. 

The reason is calculating H(Xi|V) requires that we collect count statistics for full con-

f gurations of the variables for a dataset, which is too expensive for large datasets. As we 

will discuss in the next section, we prune the counts for large variable conf gurations using 

Theorem 3. 

Theorem 6 

Let U ˆ V and Xi be a variable not in V. For any R such that U ˆ R � V, we have 

logN
MDL(Xi|R) � H(Xi|V) + K(Xi|U). (3.3) 

2

Finally, we also use Theorem 7 [11] to prune some parent scores that are already 

computed to reduce the sizes of parent graphs. 
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Theorem 7 

Let U ˆ V and X 2 U. If BestScore(U, X) > BestScore(V, X), V cannot be optimal 

parent set for X . 

Potentially we can generate the parent graphs incrementally during the search. That 

means we only generate the parent scores when they are needed in the search, which seems 

able to generate smaller parent graphs. It turns out not to be the case. If we generate the 

graphs incrementally, we have to delay the use of Theorem 7 due to incomplete parent 

graphs. Experiments indeed show that this method results in larger parent graphs. There-

fore, we choose to compute all the parent graphs before the search while using the above 

pruning techniques to reduce their sizes. 

3.4 AD-tree pruning 

For n variables with d states each, the number of ADtree nodes in an AD-tree is 

(d+1)n. It grows even faster than the sizes of order and parent graphs. It is impractical to 

compute and store all the count statistics for a large dataset. Theorem 3 requires that we 

only compute scores for small parent sets. Consequently, we only need to collect count 

statistics for small variable instantiations as well. We can prune large variable instantia-

tions from the AD-tree. We believe this pruning will signif cantly increase the scalability 

of our search algorithm. 
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3.5 The A* search algorithm 

A pseudo code of our algorithm is shown in Figure 3.1. We f rst construct an AD-tree 

for the input dataset and create all the parent graphs. The main body of the algorithm is 

essentially an A* search algorithm. We extract an optimal Bayesian network out of the 

shortest path in the end. 

The major advantage of our A* search algorithm over dynamic programming is that 

the A* search only needs to explore part of an order graph and compute some of the 

edge costs on the graph. In comparison, dynamic programming evaluates the order graph 

completely and compute all edge costs. It is clear from Figure 2.3 that an order graph is 

typically densely connected. The pruning by our search algorithm is clearly important for 

large order graphs. 

However, each step of our search algorithm has the overhead of computing the heuris-

tic values, although the computation is much cheaper when compared to computing an 

edge cost. Therefore, a search step is slightly more expensive than a similar dynamic pro-

gramming step. If the pruning does not out weigh the overhead, the search algorithm can 

be slower than dynamic programming. We believe for large datasets, the gain brought by 

the pruning will signif cantly out weigh the overhead. 

A major difference between our A* search algorithm and the systematic search method 

is that our algorithm always maintains an acyclic directed graph during the search. There 

is no need to detect or break cycles in directed graphs. This difference turns out to be a 

huge advantage for our search algorithm. 
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Algorithm: Learning optimal Bayesian network; 
Input: a dataset with variables V; 
Output: an optimal Bayesian network for the dataset. 

1. Create an AD-tree to collect suff cient statistics from the dataset 
2. Create parent graphs for all the variables 
3. Initialize OPEN list with the start state 
4. while OPEN list not empty 
5. Remove the best node n from the OPEN list 
6. if n is the goal node 
7. Extract and return a Bayesian network 
8. end if 
9. Put n in the CLOSED list 

10. Expand successor nodes of n
11. for each successor s
12. if s in CLOSED list 
13. continue 
14. end if 
15. Compute the edge cost from parent node 
16. Compute h-cost to the goal state 
17. Compute f -cost 
18. if s in OPEN list & current g cost is lower 
19. Update g cost and parent pointer 
20. else 
21. Add s to OPEN list 
22. end if 
23. end for 
24. end while 

Figure 3.1 

An A* search algorithm for learning optimal Bayesian networks. 
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CHAPTER 4 

EMPIRICAL RESULTS AND ANALYSIS 

4.1 Experiments and Results 

In order to evaluate the performance of our algorithm, I test it on a set of benchmark 

datasets from the UCI repository [1] listed in Table 4.1. The largest datasets have up 

to 24 variables and 32, 561 data points. I discretized all continuous variables or discrete 

variables with more than three states into two states and f lled in random values for the 

datasets with missing data. 

In the experiments, I compared my algorithm against dynamic programming [30, 31] 

and systematic search [11]. The two dynamic programming algorithms presented in [30, 

31] only differ in that the method in [31] uses Theorem 4 to prune parent graphs. I imple-

mented the version with pruning (denoted as ‘DP’). I also note that Theorem 3 and 7 can be 

applied to the dynamic programming algorithm to improve its time and space eff ciency. 

For fair comparison, I implemented an enhanced dynamic programming algorithm with all 

the pruning techniques used by our search algorithm (denoted as ‘DP-E’). For the system-

atic search algorithm (denoted as ‘SS’), I downloaded the binary code made public by its 

authors from the following website: http://www.ecse.rpi.edu/˘ cvrl/structlearning.html. 

This code only allows AIC or BIC scores. I choose to use BIC because it is considered 

equivalent to MDL. 
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My experiments were performed on a 3.2 GHz processor with 4 gigabytes of RAM 

running a 64-bit version of Windows XP. 

4.2 Discussion 

Table 4.1 is a comparison on the running time and sizes of order and parent graphs for 

the following algorithms: Dynamic programming with score-bound parent graph pruning 

(DP), Enhanced dynamic programming algorithm with all parent graph pruning (DP-E), 

Systematic search (SS), and the A* search algorithm. The column headings have the 

following meanings: ‘n’ is the total number of variables; ‘N’ is the number of cases; 

‘Time’ is the running time in seconds; ‘orderNodes’ is the number of nodes evaluated 

by the A* search in order graph; ‘f-orderNodes’ is the number of nodes evaluated by 

dynamic programming in order graph; ’orderEdges’ is the number of edges evaluated 

by the A* search in order graph; ’f-orderEdges’ is the number of edges evaluated by 

dynamic programming in order graph; ‘adtree’ is the size of computed AD-trees; ‘f-adtree’ 

is the size of full AD-trees. Dynamic programming evaluates all nodes and edges in order 

graphs (‘f-orderNodes’ and ’f-orderEdges’), while our A* search algorithm only generates 

partial order graphs (‘orderNodes’,’orderEdges’). Although dynamic programming and 

A* search compute the same AD-trees, I include the sizes of full AD-trees without pruning 

(‘f-adtree’) and the actual AD-trees used by the algorithms (’adtree’) to emphasize the 

importance of AD-tree pruning. Finally, ‘-’ shows failure due to time out or running out 

of memory. 
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The timing results show that our algorithm signif cantly improves the eff ciency of 

learning optimal Bayesian networks for these benchmark datasets. Both DP and SS al-

gorithms ran out of memory on several of the datasets, while DP-E and A* were able to 

solve all of them. It is not surprising that the additional pruning techniques helped DP-E 

achieve much better eff ciency than DP. Still, our A* search algorithm signif cantly out-

performs the other algorithms on most of the datasets. The speedup ranges from several 

times faster to orders of magnitude faster (e.g., wine, zoo, meta, heart). Our algorithm is 

only slower than dynamic programming on several small datasets. It is due to the over-

head of computing bounds at each search step, as I explained earlier. The difference seems 

negligible though. Since big improvement is typically observed on the large datasets, the 

results indicate that our algorithm scales up better than the other algorithms. 

The comparison between the sizes of order graphs shows that our algorithm helps 

prune some of the nodes and edges. From the table, we found that the reduction of edges 

can better explain the algorithm improvement than order nodes. This is because, as I 

explain earlier, the most expensive part of evaluating an order graph is computing the edge 

costs. For example, for problem “zoo”, the pruning of order nodes is just about 15%, but 

the reduction of edge is 67%. As a result, the time improvement of A* compared with 

DP-E reaches 74%. For problem “hepatitis”, order nodes pruning is just about 6% but the 

edge pruning is 83%. Again, the time improvement is 66.5%. From the above results, 

we found the reduction for edges is always much larger than that for order nodes. This is 

because each node has many outgoing edges. 
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Another interesting result in the table is that the time improvement rate of A* compared 

with DP-E is always slightly bigger than edges reduction rate. An example is “parkinson”. 

The edge reduction is about 51% while timing improvement is 62%. And for “Heart”, 

the edge reduction is about 56% while time improvement is 77%. The reason of this 

phenomena is that most of the edge pruning happens in deep layers of the order graph that 

are more expensive to compute. In the beginning of the search, the heuristic value is loose 

because it is equal to the sum of best scores for many variables. As the search gets deeper, 

more variables obtain exact scores, which makes the heuristic value become tighter. As a 

result, the nodes and especially the edges in deep layer are more likely to get pruned. It 

is desirable to prune these deep edges because their costs are more expensive to compute. 

The reason for this is that computing the costs amounts to selecting optimal parent sets 

for the variables. In the beginning layers, there are only few candidate parents to choose 

from. As the depth becomes large, the number of candidate parents also increases, and the 

number of possible parent sets grows exponentially in the number of candidate parents. 

Therefore, the cost of computing an edge cost also grows with the depth. Therefore, 

even though sometimes not many edges on the order graph are pruned, I pruned the most 

expensive edges, which results in signif cant improvement in search eff ciency. 

The sizes of AD-trees clearly show that it is impossible to compute and store the full 

AD-trees for large datatsets. I have to minimize the AD-trees using pruning. Otherwise, 

the algorithms will fail to construct the AD-trees before the search for an optimal structure 

even starts. 
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The systematic search algorithm [11] is much slower than our search algorithm. In our 

experiments, I did not specify any constraints. The results make it evident that the system-

atic search algorithm is much less eff cient than our algorithm. It is better to maintain an 

acyclic directed graph in searching for an optimal Bayesian network. 
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CHAPTER 5 

CONCLUSION 

In this thesis, I describe a new algorithm for learning optimal Bayesian networks based 

on the best-f rst heuristic search A* algorithm. It uses a consistent heuristic to guide the 

search such that only the most promising parts of the solution space is explored. This 

not only allows an optimal solution to be found much more eff ciently, but also in less 

space. The methods will enable the application of Bayesian learning methods to larger 

real-world applications. More importantly, the proposed methods can allow modelers to 

focus on the modeling issues and the interpretation of the learning results without worrying 

about the quality of the algorithms themselves. The methods will also enable a systematic 

comparative study of the different choices of priors and scoring functions. 

We currently use the MDL score in our algorithm. However, other scoring functions 

can also be used, as long as they are decomposable, and we also know how to estimate an 

upper bound for the score. For example, the BDeu score is also a decomposable score. An 

upper bound for the score is presented in [20]. We can easily adapt our algorithm to f nd 

optimal Bayesian network with the highest BDeu score. 

Similar to dynamic programming, our algorithm will also benef t from parallel comput-

ing and external memory search. One method in consideration to further scale up Bayesian 
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network learning is to utilize external memory based on the structured duplicate detection 

technique [25]. 
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