Mississippi State University
Scholars Junction

Theses and Dissertations Theses and Dissertations

1-1-2010

A Heuristic Search Algorithm for Learning Optimal Bayesian
Networks

Xiaojian Wu

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation

Wau, Xiaojian, "A Heuristic Search Algorithm for Learning Optimal Bayesian Networks" (2010). Theses and
Dissertations. 154.

https://scholarsjunction.msstate.edu/td/154

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junctlon It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
ation, please contact scholcomm@msstate.libanswers.com.

www.manharaa.com

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/154?utm_source=scholarsjunction.msstate.edu%2Ftd%2F154&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A HEURISTIC SEARCH ALGORITHM FOR LEARNING

OPTIMAL BAYESIAN NETWORKS

By

Xiaojian Wu

A Thesis Proposal
Submitted to the Faculty of
Mississippi State University
in Partial Fulf llment of the Requirements
for the Degree of Master of Science
in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2010

www.manharaa.com

A HEURISTIC SEARCH ALGORITHM FOR LEARNING

OPTIMAL BAYESIAN NETWORKS

By

Xiaojian Wu

Approved:

Changhe Yuan

Assistant Professor of Computer Science
and Engineering

(Major Professor)

Russell Stocker

Assistant Professor of Mathematics
and Statistics

(Committee Member)

Eric A. Hansen

Associate Professor of Computer Science
and Engineering

(Committee Member)

Edward B. Allen

Associate Professor of Computer
Science and Engineering,

and Graduate Coordinator

Sarah A. Rajala

Dean of the James Worth Bagley College

of Engineering

www.manharaa.com

Name: Xiaojian Wu

Date of Degree: August 07, 2010

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Changhe Yuan

Director of Thesis Proposal: Dr. Changhe Yuan

Title of Study: A HEURISTIC SEARCH ALGORITHM FOR LEARNING OPTIMAL
BAYESIAN NETWORKS

Pages in Study: 45

Candidate for Degree of Master of Science

Bayesian network is a popular machine learning tool for modeling uncertain depen-
dence relationships among the random factors of a domain. It represents the relations
qualitatively by using a directed acyclic graph (DAG) and quantitatively by using a set
of conditional probability distributions. Several exact algorithms for learning optimal
Bayesian networks from data have been developed recently. However, these algorithms are
still ineff cient to some extent. This is not surprising because learning Bayesian network
has been proven to be an NP-Hard problem. Based on a critique of these algorithms, this
thesis introduces a new algorithm based on heuristic search for learning optimal Bayesian
networks. Empirical results show that this new algorithm is more eff cient than the existing

algorithms.

www.manaraa.com

Key words: Bayesian Network, Directed Acyclic Graph, Structure Learning, Heursitic

Search, Dynamic Programming

www.manharaa.com

ACKNOWLEDGMENTS

This research was supported by the National Science Foundation grant I1S-0953723.
I thank Dr. Changhe Yuan for directing me in this research. I also thank Drs. Eric A.
Hansen and Russell Stocker for serving on my thesis committee.

Some f gures in this thesis were generated using GeNle, a software developed by the

University of Pittsburgh.

v

www.manharaa.com

TABLE OF CONTENTS

ACKNOWLEDGMENTS e e v
LISTOF TABLES e e s vii
LISTOF FIGURES viii
CHAPTER

1. INTRODUCTION e 1
1.1 Overview of Bayesian Network 2
1.2 Learning Bayesiannetworks 5
1.3 ThesisOutline, 7
2. LEARNING BAYESIAN NETWORK FROMDATA 8
2.1 Basic ASSUmptions a e 8
2.1.1 Assumption 1. All variables in the database are discrete . . . 8

2.1.2 Assumption 2. Data cases are independent given a Bayesian
network. 9
2.1.3 Assumption 3. There are no missing data in database. 9
2.2 Basic Model and Data Structure 10
221 ParentGraph 10
222 OrderGraph 11
223 ADTree oo 13
2.3 Scoring Metrics e 14
2.3.1 Bayesian Dirichlet(BD)and BDeu 14
2.3.2 Minimum Description Length (MDL) 18
2.4 Approximate Algorithm 20
2.5 Dynamic Programming Algorithm 21
2.6 Systematic Search Algorithm 24
3. A HEURISTIC SEARCH ALGORITHM 26
3.1 BasicMotivation 26

v

www.manaraa.com

32 Formulation. 27

3.3 Parentgraphpruning 30

34 AD-treepruningo 32

3.5 The A*search algorithm 33

4. EMPIRICAL RESULTS AND ANALYSIS 35

4.1 ExperimentsandResults 35

42 DISCuSSION e e 36

5. CONCLUSION e e 41
REFERENCES e 43

vi

www.manharaa.com

LIST OF TABLES

4.1 Experimental statistics of several learning algorithms 37

Vil

www.manharaa.com

LIST OF FIGURES

1.1 Anexample of Bayesian Network 3
1.2 A conditional probability table. 4
2.1 Database of fourvariables oL 9
2.2 All parent sets of variable 1 inset {2,3,4}. 11
2.3 Order graph of four variables 13
2.4 Order graph of four variables 15
2.5 Dynamic Programming for learning optimal Bayesian networks. 23
3.1 An A* search algorithm for learning optimal Bayesian networks. 34

viii

www.manharaa.com

CHAPTER 1

INTRODUCTION

In statistics, the probability of the occurrence of a random event has two different in-
terpretations. One interpretation is that probability is a physical property of the event. For
example, a probability 0.5 with which a coin lands head means that, when the total number
of tosses goes to inf nity, the proportion of heads will converge to 0.5. Another interpreta-
tion is that probability is a person’s degree of belief on events [16]. In this interpretation, a
probability 0.5 represents a person’s degree of belief on the coin landing head in the next
toss, i.e., probability is not a physical property but just a person’s belief. This belief may
originate from the person’s daily experience or from other people’s suggestions. In this
thesis, I focus on the latter interpretation of probability.

So far, we only consider the probability of a single random event. There are many
cases in which we are interested in modeling a more complex system that contains more
than one relevant random factors. To model multiple correlated random factors, a general
solution is to use a joint probability distribution. But this representation is impractical for
large domains as it requires too much memory for storing the joint distributions that have
large dimensions. This representation does not model conditional independence relations

that may be present among the variables. In the past several decades, Bayesian networks

www.manaraa.com

have been used to provide a compact representation of joint probability distributions by
explicitly modeling independence relationships.

Many approaches have been developed to construct Bayesian networks. One easy ap-
proach is to translate experts’ knowledge of a domain into casual relationships among
the random factors, which are then used to build the Bayesian networks. Currently, this
method has been used in medicine, economy, psychology, etc. However, working with
experts is somewhat ineff cient. Plus, there is often insuff cient domain knowledge avail-
able to build a complete Bayesian network. This is typically true, for instance, for newly
emerged research areas such as biology and chemistry. Therefore, it is necessary to de-
velop effective machine learning methods for learning Bayesian networks from data. In
the remainder of this chapter, I will give a more detailed discussion on Bayesian network

and its learning methods.

1.1 Overview of Bayesian Network

For a domain with n variables X = {Xj,..., X,,}, a Bayesian network B has two
components B, and B,. B; is the graphical part, also called the Bayesian network struc-
ture which is represented by a directed acyclic graph (DAG). Each node in the graph
corresponds to a domain variable. For simplicity, we also name nodes in DAG by X =
{Xi,..., X,,}. A directed arc from node X; to X; models a dependence relation between
X; and X,;. We say X; is a parent of X,. Let Pa; be the set containing all the par-

ents of X;. We also use nonde(X;) to denote all non-descendent nodes of X; in B, and

www.manaraa.com

de(X;) to denote all descendent nodes. Bayesian network has the following important

property [25, 19]:

An example of Bayesian Network

Theorem 1

(Markov Condition): Every node X; is independent from nonde(X;) given Pa,.

I explain this theorem brief'y with a simple network of fve variables shown in Fig-
ure 1.1. The Bayesian network has an arc from X; to X, which indicates that X; and
X, are probabilistically dependent. On the other hand, the absence of an arc between X,
and X, indicates there is no direct dependence between them. According to above theo-
rem, X; and X, are conditionally independent given X, and X3. Similarly, X, X, and
X3 are probabilistic independent from X5 given Pas = {X4}. Methods for identifying
conditional independence relations in Bayesian networks can be found in [25, 19].

The other component B, ,which is also called network parameters, provides numer-
ical measurements of the conditional dependence relationships. In a Bayesian network
model, each variable is given a conditional probability table in the form of P(X;|Pa;). If

3

www.manaraa.com

nm

State 0 0.1 0.3
State 1 0.25 0.4
State 2 0.3 0
State 3 0.25 0.2
State 4 0.1 0.1
Figure 1.2

A conditional probability table.

Pa; is empty, it degenerates into a prior probability distribution P(X;). In a Bayesian
network, random variables can be either continuous or discrete. For continuous vari-
ables, we can use probability density functions to represent the conditional relations.
For discrete variables, tables containing all conditional probabilities are used. Figure 1.2
is an example of conditional probability table of X, conditional on X;. In this table,
P(X, = stateg| X5 = statey) = 0.1 and P(X, = state;| X5 = statey) = 0.25. The size
of the table is equal to the product of the cardinalities of X4 and X5.

With a complete def nition, Bayesian network can now be used to do inference, such
as to calculate the joint probability of variables. In the future discussions, I use uppercase
letters to represent variables and lowercase letters to represent instantiations of variables.
If an instantiation involves a set of variables, it means the Cartesian product of the instanti-

ation of each individual variable. Here we use 7; to denote the instantiation of the variable

www.manharaa.com

https://state0)=0.25

set Pa;. Then a formula of calculating the joint probability of n variables can be written

as

n

P(z1,...,xy) = [[Plai|m). (1.1)

1=1

This formula, also called chain rule, is def ned to calculate joint probability of all n vari-
ables. A more detailed discussion of chain rule can be found in [25]. Using this formula,
it is not hard to calculate the probability of any set of variables by eliminating other irrele-
vant variables. Let Y, Z be two subsets of X. The formula of calculating their probabilities

can be written as:

PY)= Y PX) (1.2)
X;€X,X;:¢Y

Also we can compute P(Y|Z) by using Bayesian rule
P(Y|Z) = P(Y,Z)/P(Z). (1.3)

Besides using this brute-force approach above to calculate probabilities, there are many

other more eff cient algorithms [10, 18, 28, 29].

1.2 Learning Bayesian networks

In the last section, we discussed that a complete Bayesian network contains B, and B,,.
Correspondingly, learning Bayesian networks also contains two tasks. One is to estimate
the parameters B,. Some popular algorithms for learning parameters can be found in [25].
The other is to fnd a graphic structure B which best f'ts the data. There are many popular
algorithms for learning Bayesian networks from data. Generally, they are divided into two

categories.

www.manaraa.com

All algorithms falling in the frst category are called constraint-based learning algo-
rithms [32, 26, 36, 37]. They assume that data implies independence and conditional
independence relationships among variables that can be inferred by using statistical test-
ing or some other non-Bayesian approaches and that there exists a DAG which entails
all or at least most of these relationships. One popular statistical testing method can be
found in [27]. Using this conditional independence information, we are able to determine
the presence and absence of arcs between variables and therefore to build the whole net-
work. There are many variations of this basic idea. One of them is the Greedy Thick
Thinning algorithm [4]. It uses conditional independence and dependence relationships
obtained from mutual information tests to greedily add and delete arcs between variables.
Constraint-based algorithms often require a lot of data in order for the results to be reli-
able [2], which is often unsatisf ed in practice.

Algorithms in the second category are based on Bayesian approaches and are often
called score-based methods. They assume a search space which contains all network struc-
tures satisfying the directed acyclic constraint and assign a global prior probability to each
network. By using Bayesian approaches, we can compute the posterior probability for
each network given the data. According to the Maximum Likelihood principle in statis-
tics, a network which has the largest posterior probability best f'ts the data and is therefore
optimal in our consideration. However, sometimes we have many other concerns, such as
the complexity of a DAG, overf tting, etc. These considerations have been formulated as

various scoring principles, which I will discuss later. Some of them give better networks

www.manaraa.com

higher scores, while others give better networks lower scores. No matter what scoring

criteria we choose, the purpose is to f nd a network to achieve the optimal score.

1.3 Thesis Outline

This thesis proposes a new algorithm based on heuristic search for learning optimal
Bayesian network structures from data. We do not consider learning model parameters in
this research. For convenience, we assume that the terms learning Bayesian network and
learning Bayesian network structure have the same meaning and can be used equivalently.
As we discussed before, there are two types of learning algorithms. Our algorithm falls in
the second group. The key idea of this algorithm is applicable to any scoring principle if a
good heuristic can be found.

The remainder of the thesis is structured as followings. Chapter 2 formulates the task
of learning Bayesian network and then reviews three popular algorithms for solving it.
Chapter 3 discusses a new learning algorithm which is based on heuristic search. Chapter 4
provides empirical results for evaluating the eff ciency of this new algorithm. Chapter 5

summarizes the contribution of this thesis.

www.manaraa.com

CHAPTER 2

LEARNING BAYESIAN NETWORK FROM DATA

2.1 Basic Assumptions

Before discussing learning Bayesian network, I make three basic assumptions. These
assumptions that help to simplify the learning task are satisf ed in most practical problems.

These assumptions come from [8].

2.1.1 Assumption 1. All variables in the database are discrete

This assumption requires all variables to be discrete and have f nite number of instanti-
ations. For continuous variables, there are many effective methods to transform them into
discrete ones [22, 13, 12]. With this assumption, all conditional probabilities of a vari-
able given its parents can be stored in a table. Otherwise, a continuous probability density
function is needed, which usually makes the learning task diff cult. Currently, there are
just a few existing algorithms that handle continuous variables and they typically assume
that the probability density function follows the normal distribution. More about these

algorithms can be found in [25].

www.manaraa.com

2.1.2 Assumption 2. Data cases are independent given a Bayesian network.

A database is a list which contains N cases. Each case is an instantiation of a set of
variables. With this assumption, the database is defned to be a random sample in which
each case happens independently. A simple example is the coin toss experiment. In each
trial, the probability with which a coin lands head or tail is the same and is not inf uenced

by the result of any previous or future trial.

2.1.3 Assumption 3. There are no missing data in database.

No missing data means each case in our database is a complete instantiation of all
the variables of the domain. This assumption enables us to ignore data interpolation step
which is important in data mining. Although many technical diff culties in practice may
inevitably bring in missing values for some variables, there are many effective algorithms
available for us to f1l in missing values before the learning process. Some of these tech-
niques can be found in [12, 13, 22, 15]. Figure 2.1 is an example of a database with no

missing data.

Cases Variable_1 Variable_2 Variable_3 Variable_4
1 1 1 0 1
2 1 0 1 1
3 0 1 1 1
4 1 0 1 0
5 0 1 0 0
6 0 1 0 0
7 0 1 0 0
Figure 2.1

Database of four variables

www.manaraa.com

2.2 Basic Model and Data Structure

In a learning problem, we usually rewrite B, namely the DAG, as a variable set
X = {Xj, ..., X,,} and a set containing their parent sets { Pa,, Pas, ..., Pa, }. For instance,
Figure 1.1 shows a simple B, which can rewritten as a pair of sets { X1, Xo, X3, X4, X5}
and {{}, {X1}, {X1},{Xs, X3}, {X4}}. From this example, the parent set of X is empty.
The parent set of X, is {X;}. The parent set of X3 is also {X;}, etc. Now the task of
learning optimal Bayesian networks is equivalent to the task of fnding a parent set for
each variable such that the whole graph is an optimal directed acyclic graph. Now I will

introduce several data structures which help to illustrate the learning algorithms.

2.2.1 Parent Graph

Among all possible DAGs with n variables, we let Pas; to be a set which contains all
possible parent sets of variable X;. The elements in Pas; are all subsets of X — X;. For
example, assuming that there are three variables in total, X; cannot be a parent of itself.
Otherwise, there is a direct circle from X; to itself in the network. Either X5 or X3 or
both of them can be the parents of X;. In this case, Pas; is {{}, { X2}, { X3}, {Xs, X3} }.
Similarly, Pass is {{}, { X1}, { X3}, {X1, X3} } and Passis {{}, { X1}, { X2}, { X1, Xo}}.

Parent Graph is a simple data structure used to store Pas; for each variable. Figure 2.2
is a parent graph for the variable X; in which the variable names are represented by the
indices. Parent graph in fact is a tree in which each node represents a possible parent set.

Each node has one more variable than nodes located in its previous layer. The number

10

www.manaraa.com

Figure 2.2

All parent sets of variable 1 in set {2, 3, 4}.

of nodes in each layer is equal to C;"}' where (i = 1,2, ...) is the layer index. The total

number of nodes is 2("=1),

2.2.2 Order Graph

As described above, we use Pas; to denote all possible parents of X;. However,
the space formed by the Cartesian product [] Pas; contains many cyclic networks. For
example, {{ Xz}, {X1},{X2}} is not a correct B, because X;’s parent is X5 and X5’s
parent is X; which form a circle between these two variables. Some circles will involve
three variables or more. These illegal networks should be removed.

In order to describe the space which only contains all legal DAGs, we defne a total
ordering over the variables. This concept enables us to consider each variable’s parents

independently when constructing DAGs. A total order can be written as § = X;, < X;, <

11

www.manharaa.com

Xiy < ... = X;, where X; < X, means X, is before X, in the order. There are totally
n! possible orders over n variables. Given an order, each variable’s parents must be a
subset of those variables before it in the order. For example, X; is a parent of X; only if
X; < ... < X,. Using this method to build Pas; for each variable and construct network
space by their Cartesian product, each B, is a legal directed acyclic graph. This is true
because each variable just chooses parents from variables before it, which never produces
circles.

With the def nition of total ordering, the size of the network space that is consistent
with an order can be computed. The number of possible parents for the frst variable is
1 = 29 (no parents), for the second is 2 = 2! (no parents or the frst variable to be its
parent), for the third is 4 = 22, for the ith is 20~1)... As a result, the fnal size of PB, is
the product of these numbers which is equal to 2(**(*~1)/2),

Order graph is a structure which stores all possible orders over the variables. Fig-
ure 2.3 is an order graph for four variables. we usually called the bottom-most node that
contains no variable root and the top-most node that contains all variables leaf. Each
node contains several variables indexed by numbers. Each edge connects two nodes one
of which contains one more variable than the other. Each path from the root to the leaf
which passes n nodes is a total ordering over n variables. The earlier a variable appears
in the path, the earlier this variable appears in the ordering. In a dynamic programming
algorithm, each node is assumed to be an optimal Bayesian network containing all the
variables in the node. Larger networks can be obtained by adding variables. Dynamic

programming provides a strategy of fnding an optimal Bayesian network using optimal

12

www.manaraa.com

Figure 2.3

Order graph of four variables

networks with one fewer variable. Following this manner, f nally, an optimal network of n

variables is obtained. The detailed algorithm will be discussed later.

2.2.3 ADTree

Unlike parent graph and order graph which help to defne DAG, ADTree is a data
structure used to count the number of cases in a database that match certain instantiation of
variables [23]. These count statistics are utilized by various scoring principles. An ADTree
is an unbalanced tree which contains two types of nodes: varying node and ADTree node.
An ADtree node stores the number of cases consistent with the variables instantiation of

this node; a varying node is used to instantiate a variable. A full ADTree stores counts of

13

www.manharaa.com

cases that are consistent with all possible partial instantiations of the variables. Figure 2.4
is an ADTree with n variables and each variable has n; instantiations. A variable being
equal to a star means that this variable can be instantiated by any value when counting
matching cases in database. For example, in the root ADTree node, every variable is equal
to star, so all the cases in the database matches this node.

Now assume that we want to calculate the count of cases matching query {X; =
x, Xo = 1, X3 = %, Xy = 2}. This question can be answered by f nding an ADTree node
which has exactly the same conf guration of these four variables. First, we go to the branch
with the varying node X5 and then go to the ADTree node with X, = 1. Next, we go to
the varying node with X, and then ADTree node with X, = 2. The ADTree node thus
found gives the correct count. From this example, it is clear that we branch in an ADTree
according to specif ¢ values of variables. As a result, we are able to compute the counts of

all instantiations of the variable X; , X;,,...X;

In*

2.3 Scoring Metrics

After def ning the task of the learning Bayesian network and relevant data structures,
we need some rules to measure which network structure f't the observed data better. In

this section, I will present two popular scoring principles.

2.3.1 Bayesian Dirichlet (BD) and BDeu

Bayesian Dirichlet (BD) score [8] measures the ftness of B, to data based on proba-

bility. This method assumes that there is a prior probability P(B;) associated with each

14

www.manaraa.com

C=#
Vary X1 Vary X2 . e Vary Xn
X1=1 Xl=nl]| X1l= * X1= *
X2=* X2= * X2=1 X2=n2
Xn=* Xn=* Xn=* Xn=*
C=# C=# C=# C=#
Figure 2.4

Order graph of four variables

15

www.manharaa.com

legal B;. Along with each B, we use B, to represent all relevant parameters which help
to def ne conditional probability tables and use f(B,|B;) to denote the probability of B,
given B,. Let D be the database which contains a number of cases where D; is the ith
case and D;; be the value of the jth variable in the ith case. Then the BD score can be

calculated using formula:

P(B., D
PUBID) = o g X P(BD) @
P(B..D)= [P(DIB,, B)f(B,|B)P(B.)dp, 2)

Since we have assumption 2.1.2 that each case is independent given B and B,,, we can

rewrite P(Bs, D) to be

P(B..D) = [(ITP(Di\B,. B.) - (B,|B.) - P(B.)dx,. 3

Now I will explain each term in the formula. The term P(D;|B,, B;) is easy to obtain
using Formula 1.1(the chain rule).

Then it comes to the term f(B,|B;). Since each variable is assumed to be discrete,
there is a conditional probability table associated with each variable. For variable X;, let
the number of instantiations be r; and the size of its parents Pa; be ;. Also let z;; be the
kth instantiation of X; where k = 1,2, ..., r; and 7;; be the jth instantiation of Pa, where
j =1,2...,¢;. Then we use 6, to denote P(x;;|m;;) where j = 1,2...q;and k = 1,2, ..1;.
The number of distinct 6;;;, equals to r; - ¢;. At last, it is reasonable to make following

three assumptions.
16

www.manaraa.com

e 0,;1, is independent from 6,
e 0,1, is independent from 6,

o (O + Oiop- - biri) = 1
Based on these conditions, [T P(B,|B;) can be decomposed into:

1 P(B,|Bs) = ILI%, f(Bas, ...,) (2.4)

Now it comes to the key idea of BD scoring principle. It assumes a Dirichlet joint dis-
tribution for 6,1, ..., 0;,, Which are probabilities of X; given its parents fxed in the kth
instantiation. The Dirichlet distribution is a multivariate case of the Beta distribution with

which we can write as:

H;Z:l F(2]k>

Ok O ity o irikl Pai) = S~ 1, 0,7" (2.5)
F(j=1 mk)
where: = 1,...n, 5 = 1,...,¢5, k = 1,...,r; and 1%, ..., 4, are parameters of the

distribution.
After f guring out P(D;|B,, B;) and f(B,|Bs), Cooper and Herskovits [8] then derive
the Bayesian Dirichlet score function of B, against data D. Before giving their results, we

frst def ne the following notations.
e let N be the number of records in D
e let V;; be the number of records in D which match jth instantiation of Pa;

e let NV;;;, be the number of records in D which match both kth instantiation of X; and
Jth instantiation of Pa;

With P(B;) unchanged, the BD score function can be written as [8, 31]:

< i) (i + Nijr)
P(Bs, D) = P(Bs)
zHljnlr ,j+N”)kHl L(i)

(2.6)

17

www.manaraa.com

where ;j; and ;; are parameters. The detailed proof of this result can be found in [8].
In paper [3], the author gives the likelihood equivalent uniform Bayesian Dirichilet

(BDeu) score by further making the following assumptions based on BD score:

e P(Bqy) is uniformly distributed,

_ 1
* BTy

i
ijk = 5.

k3

Therefore BDeu score can be written as:

n 4
BDeu(Bs,D) = H H BDeu,, 2.7)
i=1 j=1
L() 5 TC e+ Ny
DO+ Ny) sy TC)

Equation 2.8 provides a method to calculate score for X; with parents fxed to the
Jth instantiation. That means we can compute the score for each variable and its parents
without worrying about other variables. Once the parents of all variables are compatible,
the whole structure’s BDeu score can be calculated by simply multiplying them together.
A scoring principle with such a property is called decomposable. There are many scoring

principles which possess this property. Decomposability makes the learning task easier.

2.3.2 Minimum Description Length (MDL)

MDL scoring principle is based on information theory [2]. In information theory,
information entropy can help us measure the amount of information that is missing upon
reception [9]. The formula to compute information entropy of random variable X; is

defned as:

H(X;) = — Zp(fij) log, P(f)fz'j) (2.9)
18

www.manaraa.com

This formula measures how much information we need in order to correctly describe vari-
able X;. In machine learning, Occam’s razor provides a good heuristic for selecting a
model to f't data. Shortly, Occam’s razor can be interpreted as: a simple model is better; a
smoother model is better; and a model with fewer parameters is better.

The MDL principle uses Occam’s razor as heuristic to select a Bayesian network that
can describe the data as accurately as possible but with as few parameters as possible.
In [2], the MDL principle is proved to be an approximation of the BD principle. Moreover,
it offers some more advantages. Here I just give the formula of MDL and explain brief'y

the meaning of each term in the formula. More details can be found in paper [2].

Def nition 1
Let By, D, N, n, q;, r;, Niji, IN;; be def ned as before. The description length MDL(B;, D)

of Bayesian Network structure B, with respect to D is def ned by

MDL(B,, D) = log P(B,) — N - H(B,, D) — (K -log N) /2 (2.10)

where K = Y, ¢; - (r; — 1) and H(B,, D) = Y0 4 s | — Nk g Ziik

This description length is also MDL score.

The frst component P(B;) is the prior probability of B;. If we assume all structures
have the same prior probabilities, this term can be ignored while comparing different net-
works.

The second component —N - H (B, D) is the conditional entropy of B,. Since the
ratio within the log is always smaller than 1, this entropy is non-negative. It measures

the uncertainty of the model with respect to the data. The larger the entropy is, the more

19

www.manaraa.com

uncertainty the model possesses. A zero value means that there is no uncertainty at all or
that the model is deterministic.

The third component is (K - log N)/2. K is the total number of parameters used to
correctly describe all conditional probability tables. For example, for X; and each instan-
tiation 7;; of parents, we need (r; — 1) parameters 6;;o, ...0;;(»,—1). The remaining one 6;;,,
is automatically calculated since the sum of all probabilities is equal to one. Thus, the total
number of parameters of X; is ¢;(r; — 1). As we know in statistics, estimation of parame-
ters will def nitely bring errors. Intuitively, the number of parameters is proportional to the
amounts of errors introduced by estimation. Bouckaert in his paper [2] says (K -log N)/2
measures number of parameters in the model and therefore is also a measurement of the
error introduced by estimating all required probabilities.

In total, because of the last two terms, the MDL score provides a measurement that
takes into consideration a model’s simplicity and its goodness of ft to the data [33]. In
this principle, the smaller the MDL score is, the better a model is. Thus, our goal is to fnd

a model that minimizes the MDL score.

2.4 Approximate Algorithm

With the def nitions of Bayesian network and scoring principles, in this section, |
brief'y review several approximate learning algorithms. It has been shown that structure
learning is NP-hard [7]. Given n variables, there are O(n2"("~1) directed acyclic graphs
(DAGS). Since the size of the solution space grows super-exponentially in the number of

variables, early research focused mainly on approximate algorithms. Various local search

20

www.manaraa.com

methods have been proposed to search for high-scoring structures, including tabu search,
restarting, and simulated annealing [2, 5, 17].

Several other methods improve simple local search using different strategies, includ-
ing ordered variables [8, 34], bound on number of parents [20, 21, 14], greedy equiva-
lent search that searches the space of equivalence classes [6], and optimal reinsertion that
greedily applies an optimal reinsertion transformation repeatedly on the graph [24]. Yet
some other methods combine constraint-based learning [32] with local search for f nding

Bayesian network structures [35].

2.5 Dynamic Programming Algorithm

In recent years, researchers began to study how to fnd optimal network structures
based on dynamic programming. In this section, I review a popular dynamic programming
algorithm [31]. This algorithm can fnd an optimal Bayesian network structure in O(n2")
time. Another similar algorithm with the same worst time complexity is presented in
paper [30].

Singh and Moore [31] developed a dynamic programming algorithm based on BDeu.
In fact, other scoring principles such as MDL are also applicable. The basic idea is that
each DAG graph contains at least one leaf node with no children nodes. Here let us assume
there are n nodes. Each Bayesian network consists of two parts: a leaf node X; and a
subnetwork in which X; and all arcs connected to X; are removed. Since the BDeu score
is decomposable,we can compute scores independently for each node given its parent set.

Therefore, if a network structure is optimal, both the leaf node and the subnetwork should

21

www.manaraa.com

be optimal. The leaf node X; is optimal in the sense that it has an optimal parent set Pa;
out of the remaining variables such that the node score N Score(X;|Pa;) is maximized
(remember that all remaining nodes can be its parents). The subnetwork is optimal in the
sense that it is the best network for the remaining n — 1 variables. More formally, the

score of an optimal network for variables V, Score(V), can be expressed as the sum of

two parts[31].
Score(V) = max Score(V \ {X;}) + BestScore(V, X;), (2.11)
where
BestScore(V,X;) = max NScore(X;|Pa;). (2.12)
Pa,CV\{X,}

Figure 2.5 gives the pseudocode of dynamic programming algorithm. In the pseu-
docode, we use Nety to denote an optimal subnetwork consisting of V.= {V;, V5, ...V, }.
Our goal is to fnd an optimal network Nety which consists of all variables denoted by
X ={Xy, X, ..., X,,}.

This algorithm can be well illustrated by the order graph. Figure 2.3 shows an or-
der graph used by dynamic programming to fnd an optimal Bayesian network with four
variables. In this graph, each node represents an optimal subnetwork consisting of the
variables in it. For example, () represents an empty subnetwork which is trivially opti-
mal. Nodes in the second layer represent all optimal subnetworks containing one variable.
Based on the second layer, each node in the third layer can be built which represents an
optimal subnetwork with two variables. Proceeding in this manner, the optimal network

with four variables is obtained at the top layer. This layer just has one node which contains
22

www.manaraa.com

Algorithm: Learning optimal Bayesian network using Dynamic Program-
ming;

Input: a dataset with n variables X = { X1, X, ... X, };

Output: an optimal Bayesian network.

1. Find all optimal structures containing just single variable.

2. fork=2,..,n
3. for each k variable set V. = { X;, .. X1 }
4 forj=1tok
5. Find for X; an optimal parent set from V \ {X;;}.
6. Let Nety._,, be an optimal network forV_;; = V '\ {Xj;}.
7 Construct Nety, by adding X;; into Nety_ ..
8 end for
9. Let Nety be the optimal one from all the Nety,s.
10. Store this optimal network and its score.
11. end for
12. end for

13. Output the optimal network of Nety where X = { X1, Xo, ..., X,,}.

Figure 2.5

Dynamic Programming for learning optimal Bayesian networks.

23

www.manharaa.com

all n variables. For the node {1, 3,4}, there are three nodes or optimal subnetworks in the
third layer having an arc pointing to it. This means the optimal subnetwork of {1, 3,4}
can be obtained by adding variable to one of these three optimal subnetworks.

Also, as shown in Figure 2.3, each directed arc means a problem of f nding the optimal
parents from a set of variables called candidate set. For example, the arc from node {1,4}
to node {1, 3,4} means to fnd the optimal parents for variable 3 from the candidate set
{1,4}. These operation can be fnished using parent graph as it links all possible parent
sets into a tree structure. This data structure makes it eff cient to search the optimal parent
set which is consistent with a candidate set.

Dynamic programming fnds optimal subnetworks for all nodes in the order graph.
It frst chooses a variable and decomposes the original network into the variable and a
subnetwork with it removed. It then computes the total score of network. Then algorithm
chooses another variable to decompose the original network and calculates its score again.
In this manner, algorithm considers each variable once and selects the one with the highest
score. Finally, the algorithm constructs an optimal network by combining the selected

variable and its parents with the optimal subnetwork with this variable removed.

2.6 Systematic Search Algorithm

A recent systematic search method uses theoretical properties of the MDL score to
reduce the size of solution space [11]. It is found that some parent sets are guaranteed to
be suboptimal without computing their scores. In particular, it is shown that, in an optimal

Bayesian network, each node can have at most O(log N) parents where N is the number

24

www.manaraa.com

of data points [11, 34]. Due to limited number of data points in a typical dataset, it is easy
to prune the parent space (def ned above) and therefore decrease the computation to fnd
optimal parent set.

The search search algorithm frst calculates the scores for all the valid parent sets. It
then fnds optimal parent sets for all the variables by initially ignoring the acyclic con-
straint. The result is a directed graph with cycles. The algorithm then repeatedly fnds
directed cycles in the candidate graph and systematically goes through all cycle-breaking

strategies by removing one arc at a time. After breaking all circles, we obtain an optimal

Bayesian network.

25

www.manharaa.com

CHAPTER 3

A HEURISTIC SEARCH ALGORITHM

3.1 Basic Motivation

From the algorithm in Figure 2.5, it is easy to see that dynamic programming f nds
optimal subnetworks for all subsets of X. which in turn requires computing all the parent
scores of each variable. For n variables, there are 2" nodes to evaluate in the order graph.
For each node, there is a parent graph which stores 2"~ ! parent sets along with their scores.
The total number of parent sets is n - 2" 1. This number grows very fast with respect to n.
The algorithm[31] computes and stores all these parent sets. As a result, while the number
of variables increases, the algorithm becomes infeasible as it requires too much memory
and too much time to compute and store all parent sets.

The systematic search algorithm in [11] was able to reduce the computation using the
theoretical properties. However, it was shown to be less eff cient than dynamic program-
ming on some datasets. We believe there are two major reasons. First, it initially ignores
the acyclic constraint and f nds optimal parent sets independently for all the variables. The
number of parent scores that need to be computed can still be prohibitive and the search
space containing cyclic networks is huge as well. Second, it needs to repeatedly detect and
break cycles in directed graphs, which may be expensive for large graphs and results in an

ineff cient search.

26

www.manaraa.com

In this chapter, I present an improved search method for f nding optimal Bayesian net-
works to address the drawbacks of dynamic programming and systematic search. We frst
introduce our formulation and related techniques for improving search eff ciency and then

end this chapter with a pseudocode of the algorithm and a discussion on its advantages.

3.2 Formulation

The basic idea of our algorithm is to formulate learning optimal Bayesian networks as
a shortest path finding problem. We use the order graph as the search graph. We view the
root of order graph as the start state and the leaf as the goal state.

For any two neighboring nodes S; and S, with an arc from S; to S;, We def ne the
edge cost ¢(S1,S2) to be —BestScore(Sa, X;), where X; is the only variable the two
nodes differ.

Because we use the MDL score, we set the edge cost to be M D L(X;|Pa;), where Pa;
is an optimal parent set for X; out of S;. The goal is then to fnd a shortest path from
the start state to the goal state that has the minimal cost. By def nition, the shortest path
corresponds to a Bayesian network with the maximum total score.

Once we formulate the problem as a shortest path f nding problem, we can apply any
graph search technique to solve it. In this thesis, I present a best-first heuristic search
algorithm, i.e., an A* search algorithm. We use a priority queue, called OPEN list, to
organize the search frontier and initialize it with the start state. At each search step, we
pop up the search node with the smallest cost from the OPEN list and expand its children

search nodes. For each search node, we compute its f cost, the estimated total cost, as the

27

www.manaraa.com

sum of g cost, the exact cost so far, and & cost, the estimated future cost to the goal state.
Once a node is expanded, it is placed in a CLOSED list. Duplicate detection is performed
for each newly generated node on both OPEN and CLOSED lists. If a duplicate is detected
in the CLOSED list, we discard the new node immediately because we show later that we
use a consistent heuristic. If a duplicate is detected in the OPEN list and the new node has
a lower g-cost, we update the existing node with the new g-cost and parent pointer.

The g cost is computed as the sum of edge costs on the best path from the start state to
the current state. Each edge cost is computed when the end node of the edge is generated
by the search. The computation is achieved by searching a suitable parent graph. For
example, when the edge cost between nodes {2, 3} and {1, 2, 3} in Figure 2.3 is needed,
we will go to the parent graph of variable 1 and search for a subset of {2, 3} that has the
highest score. Therefore, our method is a two-layer nested search algorithm. The higher-
level search works on the order graph and f nds a shortest path. Whenever the higher-level
search needs an edge cost, a lower-level search is deployed to f nd an appropriate score on
a parent graph.

Since the A* search only explores part of the order graph, we only need to compute
some of the edge costs. This pruning is inherent in the search algorithm and is not reliant
on any property of the scoring function.

If we use a h function that is not only admissible but also consistent, the A* search
algorithm guarantees to fnd a shortest path once the goal state is selected for expansion.

We can extract an optimal Bayesian network out of the shortest path as each edge on the

28

www.manaraa.com

path records an optimal parent set for a variable. Let U be a node on the order graph. We

consider the following A function.

Def nition 2

h(U)=— > BestScore(V,X;). (3.1

X;€V\U

h is clearly admissible, i.e., it always underestimate the cost (or equivalently, over-
estimate the score). h allows each remaining variable to select optimal parents from all
the other variables in V. This effectively relaxes the acyclic assumption and results in a
lower bound cost. The following theorem proves that the heuristic is also consistent. A

consistent heuristic is guaranteed to be admissible.

Theorem 2
h 1s consistent.

Proof: For any successor node R of U, let Y € R\ U. We have

hU) = — Z BestScore(V, X;)
X,EV\U
< - > BestScore(V, X;)

XiEV\U, X, £Y
—BestScore(R,Y)

— AR)+¢(U,R).

The inequality holds because fewer variables are used to select optimal parents for Y.

Hence, h is consistent. [|

29

www.manharaa.com

3.3 Parent graph pruning

Parent graphs are used to compute both g and h costs in our search algorithm. The
h-cost seems expensive to compute because it requires computing the optimal scores
BestScore(V,Y;) for all remaining variables. This is equivalent to fnding an optimal
parent set for each variable out of all the other variables, which requires a complete search
on the variable’s parent graph. However, we only need to compute these best scores once
in the beginning of the search. The scores are repeatedly used in later search. It is more
expensive to compute the g-costs, which amounts to compute the edge costs. Computing
each edge cost requires searching a parent graph to fnd the highest score among subsets
of given candidate parents.

Smaller parent graphs clearly will make computing g and h costs more eff cient. We
utilize several pruning techniques to reduce the size of parent graphs.
One technique relies on the following theorem presented in [11, 34] to prune large

parent graphs.

Theorem 3
In an optimal Bayesian network based on the MDL scoring function, each variable has at

most log (2%) parents, where NV is the number of cases.

Therefore, there is no need to compute scores for any parent set whose size is larger

than log(%).
Another technique prunes parent sets that are guaranteed to be worse than a common

subset parent set without computing their exact scores based on the following theorem

presented in [31].
30

www.manaraa.com

Theorem 4
Let U C Vand X € U. Let hScore(X,U,V) be an upper bound which bounds

BestScore(R, X) for any R such that U € R C V. Then if hScore(X,U, V) <

BestScore(U, X), no proper superset of U can be optimal parent set for X.

To use this theorem, we need the upper bound score hScore(X, U, V). Since we use

the MDL score, we use the following lower bound for MDL def ned in [33].

Theorem 5

Let U C V and X, be a variable not in V. For any R such that U C R C V, we have

MDL(XR) >

log2 N kx|, (3.2)

We do not use the tighter lower bound for MDL def ned in Theorem 6 presented in [34].
The reason is calculating H (X;|V) requires that we collect count statistics for full con-
f gurations of the variables for a dataset, which is too expensive for large datasets. As we
will discuss in the next section, we prune the counts for large variable conf gurations using

Theorem 3.

Theorem 6

Let U C V and X; be a variable not in V. For any R such that U C R C V, we have

MDL(X;|R) > H(X;[V) +

IOgQNK(XAU). (3.3)

Finally, we also use Theorem 7 [11] to prune some parent scores that are already

computed to reduce the sizes of parent graphs.
31

www.manaraa.com

Theorem 7
LetU C Vand X € U. If BestScore(U, X) > BestScore(V, X), V cannot be optimal

parent set for X.

Potentially we can generate the parent graphs incrementally during the search. That
means we only generate the parent scores when they are needed in the search, which seems
able to generate smaller parent graphs. It turns out not to be the case. If we generate the
graphs incrementally, we have to delay the use of Theorem 7 due to incomplete parent
graphs. Experiments indeed show that this method results in larger parent graphs. There-
fore, we choose to compute all the parent graphs before the search while using the above

pruning techniques to reduce their sizes.

3.4 AD-tree pruning

For n variables with d states each, the number of ADtree nodes in an AD-tree is
(d+ 1)™. Tt grows even faster than the sizes of order and parent graphs. It is impractical to
compute and store all the count statistics for a large dataset. Theorem 3 requires that we
only compute scores for small parent sets. Consequently, we only need to collect count
statistics for small variable instantiations as well. We can prune large variable instantia-
tions from the AD-tree. We believe this pruning will signif cantly increase the scalability

of our search algorithm.

32

www.manaraa.com

3.5 The A* search algorithm

A pseudo code of our algorithm is shown in Figure 3.1. We f rst construct an AD-tree
for the input dataset and create all the parent graphs. The main body of the algorithm is
essentially an A* search algorithm. We extract an optimal Bayesian network out of the
shortest path in the end.

The major advantage of our A* search algorithm over dynamic programming is that
the A* search only needs to explore part of an order graph and compute some of the
edge costs on the graph. In comparison, dynamic programming evaluates the order graph
completely and compute all edge costs. It is clear from Figure 2.3 that an order graph is
typically densely connected. The pruning by our search algorithm is clearly important for
large order graphs.

However, each step of our search algorithm has the overhead of computing the heuris-
tic values, although the computation is much cheaper when compared to computing an
edge cost. Therefore, a search step is slightly more expensive than a similar dynamic pro-
gramming step. If the pruning does not out weigh the overhead, the search algorithm can
be slower than dynamic programming. We believe for large datasets, the gain brought by
the pruning will signif cantly out weigh the overhead.

A major difference between our A* search algorithm and the systematic search method
is that our algorithm always maintains an acyclic directed graph during the search. There
is no need to detect or break cycles in directed graphs. This difference turns out to be a

huge advantage for our search algorithm.

33

www.manaraa.com

Algorithm: Learning optimal Bayesian network;
Input: a dataset with variables V;
Output: an optimal Bayesian network for the dataset.

—_
— e v

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

NN RO =

Create an AD-tree to collect suff cient statistics from the dataset
Create parent graphs for all the variables
Initialize OPEN list with the start state
while OPEN list not empty
Remove the best node n from the OPEN list
if n is the goal node
Extract and return a Bayesian network
end if
Put n in the CLOSED list
Expand successor nodes of n
for each successor s
if s in CLOSED list
continue
end if
Compute the edge cost from parent node
Compute h-cost to the goal state
Compute f-cost
if s in OPEN list & current g cost is lower
Update g cost and parent pointer
else
Add s to OPEN list
end if
end for
end while

Figure 3.1

An A* search algorithm for learning optimal Bayesian networks.

34

www.manaraa.com

CHAPTER 4

EMPIRICAL RESULTS AND ANALYSIS

4.1 Experiments and Results

In order to evaluate the performance of our algorithm, I test it on a set of benchmark
datasets from the UCI repository [1] listed in Table 4.1. The largest datasets have up
to 24 variables and 32, 561 data points. I discretized all continuous variables or discrete
variables with more than three states into two states and flled in random values for the
datasets with missing data.

In the experiments, I compared my algorithm against dynamic programming [30, 31]
and systematic search [11]. The two dynamic programming algorithms presented in [30,
31] only differ in that the method in [31] uses Theorem 4 to prune parent graphs. I imple-
mented the version with pruning (denoted as ‘DP”). I also note that Theorem 3 and 7 can be
applied to the dynamic programming algorithm to improve its time and space eff ciency.
For fair comparison, I implemented an enhanced dynamic programming algorithm with all
the pruning techniques used by our search algorithm (denoted as ‘DP-E’). For the system-
atic search algorithm (denoted as ‘SS’), I downloaded the binary code made public by its
authors from the following website: http://www.ecse.rpi.edu/~ cvrl/structlearning.html.
This code only allows AIC or BIC scores. I choose to use BIC because it is considered

equivalent to MDL.
35

www.manaraa.com

http://www.ecse.rpi.edu/�

My experiments were performed on a 3.2 GHz processor with 4 gigabytes of RAM

running a 64-bit version of Windows XP.

4.2 Discussion

Table 4.1 is a comparison on the running time and sizes of order and parent graphs for
the following algorithms: Dynamic programming with score-bound parent graph pruning
(DP), Enhanced dynamic programming algorithm with all parent graph pruning (DP-E),
Systematic search (SS), and the A* search algorithm. The column headings have the
following meanings: ‘n’ is the total number of variables; ‘N’ is the number of cases;
‘Time’ is the running time in seconds; ‘orderNodes’ is the number of nodes evaluated
by the A* search in order graph; ‘f-orderNodes’ is the number of nodes evaluated by
dynamic programming in order graph; ’orderEdges’ is the number of edges evaluated
by the A* search in order graph; ’f-orderEdges’ is the number of edges evaluated by
dynamic programming in order graph; ‘adtree’ is the size of computed AD-trees; ‘f-adtree’
is the size of full AD-trees. Dynamic programming evaluates all nodes and edges in order
graphs (‘f-orderNodes’ and ’f-orderEdges’), while our A* search algorithm only generates
partial order graphs (‘orderNodes’,’orderEdges’). Although dynamic programming and
A* search compute the same AD-trees, I include the sizes of full AD-trees without pruning
(‘f-adtree’) and the actual AD-trees used by the algorithms (*adtree’) to emphasize the
importance of AD-tree pruning. Finally, ‘-’ shows failure due to time out or running out

of memory.

36

www.manaraa.com

11+dvT8'C LO+H199°T S8O+HEI0T LO+HI6L'6 LO+HASLY T LO+HTI9'T |9€°TEO0L - 0¥’ TPS'9T - L6l ¢ uosunyied
01+d¥I¥'6 90+d109'% LO+HLY9'6 LO+ATSTY 90+H68€'8 90+dYE0'S |68 LEI'T - ¥9°€00°S - 08 194 HesH
01+d9%Y0°T LO+HICL'T LO+HYI9OY 90+H6S8'8 90+HYP6IY 90+HEBO'T | €1 V16 : 68 1L1°91 - 8¢S [44 elow
60-+dL8Y'€ 90+d¥T91 LO+H6VO'T 90+HT081 88T¥TS 66S V61 0L°0¢ - Y16 CO'LTI|SST 0T sumedoy
0I+d88TT LO+H80L T 90+AYIIT 6£8°€9C TLOIET LLT'86 LLTI : 19°9C : S¢y L1 3unoa
80+H16T 1 L0+H698°9 90+dVITT 90+H0¥0 T TLOIEI 6L8°0€1 Yy 669 - 9T'6LL 1'0by |000°0T LI N9]
80+HI6T 1 SO+AI169Y 90+dVIT T $89°G9¢ TLOIET 0T8Tl 918 IV'LLE T¥'1E 80°0¢ | 101 L1 00z
80+H0T0°'T 90+H8YE v 88THTS (430433 9€5°69 L1S°S9 €91 86961 0I'¢T r'IC [069 91 paId
LOHASEY T 90+dS10°6 09L°SHT 8¥6°L0T 89L°TE 0SL°C€ (4514 . 06°s¢l L8'L6 |196°T€E Sl Hnpe
TOTLLED 9EVH0S 889°pII LT9°8¢ ¥8€°91 Sor'el vl 1€9C 1¥'¢ L6C |8LI 4! ouIm
000°080°T 90L°9€€ 0TI‘S 12C°C ¥20°1 196 6v°0 €80 6¥0 €70 |ELVT 01 Ry
T66'7E 0ty €T v0€'T LY9°1 (45 908 8C0 ¢ecs 970 vT0 [LLI'Y 6 Juofeqe
8YL°8 [44%4 ¥20°1 Svy 9s¢ 0I¢ €00 9¢0 200 ¥0'0 0TI 8 ojnoe
000°0% 000°0% 4% <0T 8¢l 148 7o 910 LOO 110 [8TLT L 160
L8I°T I81¢C 4% £9¢ 8¢1 edl 00 ¢l'o 200 ¥0°0 | SPE L ToAT]
¥20°1 865 08 139 [43 LT 10°0 €00 000 00 |0ST S St
Qonpe-J Jonpe SOFpHIopIO-} SASPHIOPIO SOPONIOPIO-} SIPONIOPIO | Y SS 4-dd da N u 1asBIBp
SO1ISIIE)S ATOWDIA sj[nsax Surwiy, josere

SW)LI0T[e SUIIBd] [BIOASS JO SO1SIIe)s [eyudwLiodxyg

['v 21qeL

37

www.manaraa.com

The timing results show that our algorithm signif cantly improves the eff ciency of
learning optimal Bayesian networks for these benchmark datasets. Both DP and SS al-
gorithms ran out of memory on several of the datasets, while DP-E and A* were able to
solve all of them. It is not surprising that the additional pruning techniques helped DP-E
achieve much better eff ciency than DP. Still, our A* search algorithm signif cantly out-
performs the other algorithms on most of the datasets. The speedup ranges from several
times faster to orders of magnitude faster (e.g., wine, zoo, meta, heart). Our algorithm is
only slower than dynamic programming on several small datasets. It is due to the over-
head of computing bounds at each search step, as I explained earlier. The difference seems
negligible though. Since big improvement is typically observed on the large datasets, the
results indicate that our algorithm scales up better than the other algorithms.

The comparison between the sizes of order graphs shows that our algorithm helps
prune some of the nodes and edges. From the table, we found that the reduction of edges
can better explain the algorithm improvement than order nodes. This is because, as I
explain earlier, the most expensive part of evaluating an order graph is computing the edge
costs. For example, for problem “z00”, the pruning of order nodes is just about 15%, but
the reduction of edge is 67%. As a result, the time improvement of A* compared with
DP-E reaches 74%. For problem “hepatitis”, order nodes pruning is just about 6% but the
edge pruning is 83%. Again, the time improvement is 66.5%. From the above results,
we found the reduction for edges is always much larger than that for order nodes. This is

because each node has many outgoing edges.

38

www.manaraa.com

Another interesting result in the table is that the time improvement rate of A* compared
with DP-E is always slightly bigger than edges reduction rate. An example is “parkinson”.
The edge reduction is about 51% while timing improvement is 62%. And for “Heart”,
the edge reduction is about 56% while time improvement is 77%. The reason of this
phenomena is that most of the edge pruning happens in deep layers of the order graph that
are more expensive to compute. In the beginning of the search, the heuristic value is loose
because it is equal to the sum of best scores for many variables. As the search gets deeper,
more variables obtain exact scores, which makes the heuristic value become tighter. As a
result, the nodes and especially the edges in deep layer are more likely to get pruned. It
is desirable to prune these deep edges because their costs are more expensive to compute.
The reason for this is that computing the costs amounts to selecting optimal parent sets
for the variables. In the beginning layers, there are only few candidate parents to choose
from. As the depth becomes large, the number of candidate parents also increases, and the
number of possible parent sets grows exponentially in the number of candidate parents.
Therefore, the cost of computing an edge cost also grows with the depth. Therefore,
even though sometimes not many edges on the order graph are pruned, I pruned the most
expensive edges, which results in signif cant improvement in search eff ciency.

The sizes of AD-trees clearly show that it is impossible to compute and store the full
AD-trees for large datatsets. I have to minimize the AD-trees using pruning. Otherwise,
the algorithms will fail to construct the AD-trees before the search for an optimal structure

even starts.

39

www.manaraa.com

The systematic search algorithm [11] is much slower than our search algorithm. In our
experiments, I did not specify any constraints. The results make it evident that the system-
atic search algorithm is much less eff cient than our algorithm. It is better to maintain an

acyclic directed graph in searching for an optimal Bayesian network.

40

www.manharaa.com

CHAPTER 5

CONCLUSION

In this thesis, I describe a new algorithm for learning optimal Bayesian networks based
on the best-f rst heuristic search A* algorithm. It uses a consistent heuristic to guide the
search such that only the most promising parts of the solution space is explored. This
not only allows an optimal solution to be found much more eff ciently, but also in less
space. The methods will enable the application of Bayesian learning methods to larger
real-world applications. More importantly, the proposed methods can allow modelers to
focus on the modeling issues and the interpretation of the learning results without worrying
about the quality of the algorithms themselves. The methods will also enable a systematic
comparative study of the different choices of priors and scoring functions.

We currently use the MDL score in our algorithm. However, other scoring functions
can also be used, as long as they are decomposable, and we also know how to estimate an
upper bound for the score. For example, the BDeu score is also a decomposable score. An
upper bound for the score is presented in [20]. We can easily adapt our algorithm to fnd
optimal Bayesian network with the highest BDeu score.

Similar to dynamic programming, our algorithm will also benef t from parallel comput-

ing and external memory search. One method in consideration to further scale up Bayesian

41

www.manaraa.com

network learning is to utilize external memory based on the structured duplicate detection

technique [25].

42

o AJLb

www.manharaa.com

REFERENCES

[1] A. Asuncion and D. Newman, “UCI machine learning repository,” 2007.

[2] R. R. Bouckaert, Probabilistic Networks Constuction Using the Minimum Descrip-
tion Length Principle, Tech. Rep., Utrecht University, The Netherlands, 1994.

[3] W. Bruntine, “Theory ref nement on Bayesian networks,” In Proceedings of Uncer-
tainty in Artificial Intelligence, 1991.

[4] J. Cheng, D. Bell, and W. Liu, “An algorithm for Bayesian belief network construc-
tion from data,” In Proceedings of AI & STAT 97, 1997.

[5] D. M. Chickering, “A transformational characterization of equivalent Bayesian net-
work structures,” In Proceedings of the 11th annual conference on uncertainty in
artificial intelligence, 1995.

[6] D. M. Chickering, “Learning equivalence classes of Bayesian-network structures,”
Journal of Machine Learning Research, vol. 2, 2002, pp. 445-498.

[7] D. M. Chickering and C. Meek, “Large-Sample Learning of Bayesian Networks is
NP-Hard,” In Proceedings of Uncertainty in Artificial Intelligence 2003, 2003.

[8] G. F. Cooper and E. Herskovits, “A Bayesian Method for the Induction of Proba-
bilistic Networks from Data,” Machine Learning, vol. 9, 1992, pp. 309-347.

[9] T. M. Cover and J. A. Thomas, Elements of Information Theory, Second Edition,
Wiley, 2006.

[10] P. Dawid, “Applications of a general propagation algorithm for probabilistic expert
systmes,” Statistics and Computing, vol. 2, 1992, pp. 25-36.

[11] C. de Campos, Z. Zeng, and Q. Ji., “Structure learning of Bayesian networks using
constraints,” In Proceedings of the International Conference on Machine Learning,
2009.

[12] I. Ebert-Uphoff, A Probability-Based Approach to Soft Discretization for Bayesian
Networks, Tech. Rep., Georgia Institute of Technology. School of Mechanical Engi-
neering, 2009.

[13] N. Friedman and M. Goldszmidt, “Discretizing Continuous Attributes While Learn-
ing Bayesian Networks,” In Proc. ICML, 1996.

43

www.manaraa.com

[14] N. Friedman, I. Nachman, and D. Peer, “Learning Bayesian network structure from
massive datasets: The sparse candidate algorithm,” In Proceedings of the 13th Con-
ference on Uncertainty in Artificial Intelligence, 1999.

[15] J. Gama, L. Torgo, and C. Soares, “Dynamic Discretization of Continuous At-
tributes,” In Proceedings of the Sixth Ibero-American Conference on Al, 1998.

[16] D. Heckerman, A tutorial on learning with Bayesian networks, Redmond, Washing-
ton, 1996.

[17] D. Heckerman, D. Geiger, and D. M. Chickering, “Learning Bayesian networks: The
combination of knowledge and statistical data,” Machine Learning, vol. 20, 1995,
pp. 197-243.

[18] F. Jensen, S. Lauritzen, and K. Olesen, “Bayesian updating in recursive graphical
models by local computations,” Computational Statisticals Quarterly, vol. 4, 1990,
pp. 269-282.

[19] P. Judea, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference, Elsevier Science, 1988.

[20] M. Koivisto, “Advances in exact Bayesian structure discovery in Bayesian networks,”
In Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2006.

[21] M. Koivisto and K. Sood, “Exact Bayesian Structure Discovery in Bayesian Net-
works,” Journal of Machine Learning, vol. 5, 2004, pp. 549-573.

[22] H. Liu, F. Hussain, C. L. Tan, and M. Dash, “Discretization: An Enabling Tech-
nique,” Data Mining and Knowledge Discovery, vol. 6, 2002, p. 393C423.

[23] A. Moore and M. S. Lee, “Cached Suff cient Statistics for Eff cient Machine Learn-
ing with Large Datasets,” Journal of Artificial Intelligence Research, vol. 8, 1998,
pp. 67-91.

[24] A. Moore and W.-K. Wong, “Optimal reinsertion: A new search operator for ac-
celerated and more accurate Bayesian network structure learning,” In International
Conference. on Machine Learning, 2003.

[25] R. E. Neapolitan, Learning Bayesian Networks, Prentice Hall, 2003.

[26] G. Rebane and J. Peal, “The Recovery of Casual Polytrees from Statistical Data,” In
Proceedings Uncertainty in Artificial Intelligence, 1987.

[27] R. Scheines, P. Spirtes, C. Glymour, and C. Meek, Tetrad I1: User Manual, Hillsdale,
New Jersery, Hillsdale, New Jersery, 1994.

[28] R. Shachter, “Probabilistic inference and inf uence diagrams,” Operations Research,
vol. 36, 1988, pp. 589-604.

44

www.manaraa.com

[29] R. Shachter and C. Kenley, “Gaussian infuence diagrams,” Management Science,
vol. 35, 1989, pp. 527-550.

[30] T. Silander and P. Myllmaki, “A simple approach for fnding the globally optimal
Bayesian network structure,” In Proceedings of Uncertainty in Artificial Intelligence,
2006.

[31] A. Singh and A.W.Moore, finding optimal bayesian networks by dynamic program-
ming, Tech. Rep., Carnegie Mellon University, 2005.

[32] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction and Search (2nd
edition), MIT Press, 2001.

[33] J. Suzuki, “Learning Bayesian belief networks based on the MDL principle: An
eff cient algorithm using the branch and bound technique,” In Proceedings of the
Thirteenth International Conference on Machine Learning, 1996.

[34] J. Tian, “A branch-and-bound Algorithm for MDL Learning Bayesian Networks,”
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, 2000.

[35] I. Tsamardinos, L. Brown, and C. Aliferis, “The maxmin hill-climbing Bayesian
network structure learning algorithm,” Machine learning, 2006.

[36] T. Verma and J. Pearl, “Casual Networks: Semantics and Expressiveness,” In Pro-
ceedings Uncertainty in Artificial Intelligence, 1988.

[37] N. Wermuth and S. L. Lauritzen, “Graphical and Recursive Models for Contingency
Tables,” Biometrika, vol. 72, 1983, pp. 537-552.

45

www.manaraa.com

	A Heuristic Search Algorithm for Learning Optimal Bayesian Networks
	Recommended Citation

	page1
	page2
	page3

